
INTRODUCTION TO
COMPUTER SCIENCE
Dr. Yasmine El-Glaly
Fall 2013

Ch.2: Data Manipulation
• Computer Architecture
• Machine Language
• Program Execution

Computer
Architecture

• The circuitry in a computer
that controls the manipulation
of data is called the central
processing unit, or CPU
• Whose connecting pins plug
into a socket mounted on the
machine’s main circuit board
(called the motherboard).

Machine Language
Program Execution

CPU Basics
• A CPU consists of

•  arithmetic/logic unit (ALU), which contains the circuitry that
performs operations on data (such as addition and subtraction);

•  control unit, which contains the circuitry for coordinating the
machine’s activities;

•  register unit, which contains data storage cells (similar to main
memory cells), called registers, that are used for temporary
storage of information within the CPU.
•  Some of the registers within the register unit are considered general-

purpose registers whereas others are special-purpose registers.

CPU Basics
• General-purpose registers serve as temporary holding

places for data being manipulated by the CPU.

74 Chapter 2 Data Manipulation

In Chapter 1 we studied topics relating to the storage of data inside a computer.
In this chapter we will see how a computer manipulates that data. This manipu-
lation consists of moving data from one location to another as well as performing
operations such as arithmetic calculations, text editing, and image manipulation.
We begin by extending our understanding of computer architecture beyond that
of data storage systems.

2.1 Computer Architecture
The circuitry in a computer that controls the manipulation of data is called the
central processing unit, or CPU (often referred to as merely the processor). In
the machines of the mid-twentieth century, CPUs were large units comprised of
perhaps several racks of electronic circuitry that reflected the significance of the
unit. However, technology has shrunk these devices drastically. The CPUs found
in today’s desktop computers and notebooks are packaged as small flat squares
(approximately two inches by two inches) whose connecting pins plug into a
socket mounted on the machine’s main circuit board (called the motherboard).
In smartphones, mini-notebooks, and other Mobile Internet Devices (MID),
CPU’s are around half the size of a postage stamp. Due to their small size, these
processors are called microprocessors.

CPU Basics
A CPU consists of three parts (Figure 2.1): the arithmetic/logic unit, which
contains the circuitry that performs operations on data (such as addition and
subtraction); the control unit, which contains the circuitry for coordinating the
machine’s activities; and the register unit, which contains data storage cells
(similar to main memory cells), called registers, that are used for temporary
storage of information within the CPU.

Some of the registers within the register unit are considered general-purpose
registers whereas others are special-purpose registers. We will discuss some of

Arithmetic/logic
unit

Register unit

Central processing unit Main memory

Control
unit

Bus

Registers

.

.

.

Figure 2.1 CPU and main memory connected via a bus

Computer
Architecture

• Von Neumann architecture
• architecture where program
stored in memory

Machine Language
Program Execution

Computer
Architecture

• Adding 2 values stored in
memory:

 1. Get first value in a register
 2. Get second value in a

register
 3. Add results in ALU —

result in a register
 4. Store result in memory

(or a register)

Machine Language
Program Execution

Computer Architecture

• CPUs are designed to
recognize instructions
encoded as bit patterns.

• This collection of instructions
along with the encoding
system is called the machine
language.

Machine
Language
Program Execution

Computer Architecture

• CPU that executes a minimal
set of machine instructions is
called a reduced instruction
set computer (RISC)
• efficient, fast, and less expensive

• CPUs that execute a large
number of instructions, even
though many of them are
technically redundant, leads to
complex instruction set
computer (CISC)
• better cope with the ever

increasing complexities of today’s
software.

Machine
Language
Program Execution

Computer Architecture

• Machine’s instructions can be
categorized into 3 groupings:
•  (1) the data transfer group,

•  instructions that request the
movement of data from one location to
another

•  E.g. LOAD, STORE
•  (2) the arithmetic/logic group, and

•  Add, Boolean operations AND, OR,
and XOR

•  (3) the control group.
•  instructions that direct the execution of

the program rather than the
manipulation of data

•  E.g. JUMP

Machine
Language
Program Execution

Computer Architecture

• Example machine language —
Appendix C Instruction:
•  4 bits op-code
•  12 bits operands

• 

• 

• How many general purpose
registers are there?

• A. 4 B. 8 C. 12
• D. 16 E. 32

Machine
Language
Program Execution

812.2 Machine Language

us that an instruction beginning with the hexadecimal digit 3 refers to a STORE
instruction, and an instruction beginning with hexadecimal A refers to a
ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruc-
tion given by the op-code. For example (Figure 2.6), if the first hexadecimal
digit of an instruction were 3 (the op-code for storing the contents of a regis-
ter), the next hexadecimal digit of the instruction would indicate which regis-
ter is to be stored, and the last two hexadecimal digits would indicate which
memory cell is to receive the data. Thus the instruction 35A7 (hexadecimal)
translates to the statement “STORE the bit pattern found in register 5 in the
memory cell whose address is A7.” (Note how the use of hexadecimal notation
simplifies our discussion. In reality, the instruction 35A7 is the bit pattern
0011010110100111.)

(The instruction 35A7 also provides an explicit example of why main mem-
ory capacities are measured in powers of two. Because 8 bits in the instruction
are reserved for specifying the memory cell utilized by this instruction, it is pos-
sible to reference exactly 28 different memory cells. It behooves us therefore to
build main memory with this many cells—addressed from 0 to 255. If main
memory had more cells, we would not be able to write instructions that distin-
guished between them; if main memory had fewer cells, we would be able to
write instructions that referenced nonexisting cells.)

Op-code Operand

0011 0101 1010 0111

3 5 A 7

Actual bit pattern (16 bits)

Hexadecimal form (4 digits)

Figure 2.5 The composition of an instruction for the machine in Appendix C

3 5 A 7

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Op-code 3 means
to store the contents
of a register in a
memory cell.

Instruction

Figure 2.6 Decoding the instruction 35A7

Computer Architecture

• Example machine language —
Appendix C Instruction:
•  4 bits op-code
•  12 bits operands

• 

• 

• How many general purpose
registers are there?

• A. 4 B. 8 C. 12
• D. 16 E. 32

Machine
Language
Program Execution

812.2 Machine Language

us that an instruction beginning with the hexadecimal digit 3 refers to a STORE
instruction, and an instruction beginning with hexadecimal A refers to a
ROTATE instruction.

The operand field of each instruction in our illustrative machine consists
of three hexadecimal digits (12 bits), and in each case (except for the HALT
instruction, which needs no further refinement) clarifies the general instruc-
tion given by the op-code. For example (Figure 2.6), if the first hexadecimal
digit of an instruction were 3 (the op-code for storing the contents of a regis-
ter), the next hexadecimal digit of the instruction would indicate which regis-
ter is to be stored, and the last two hexadecimal digits would indicate which
memory cell is to receive the data. Thus the instruction 35A7 (hexadecimal)
translates to the statement “STORE the bit pattern found in register 5 in the
memory cell whose address is A7.” (Note how the use of hexadecimal notation
simplifies our discussion. In reality, the instruction 35A7 is the bit pattern
0011010110100111.)

(The instruction 35A7 also provides an explicit example of why main mem-
ory capacities are measured in powers of two. Because 8 bits in the instruction
are reserved for specifying the memory cell utilized by this instruction, it is pos-
sible to reference exactly 28 different memory cells. It behooves us therefore to
build main memory with this many cells—addressed from 0 to 255. If main
memory had more cells, we would not be able to write instructions that distin-
guished between them; if main memory had fewer cells, we would be able to
write instructions that referenced nonexisting cells.)

Op-code Operand

0011 0101 1010 0111

3 5 A 7

Actual bit pattern (16 bits)

Hexadecimal form (4 digits)

Figure 2.5 The composition of an instruction for the machine in Appendix C

3 5 A 7

This part of the operand identifies
the address of the memory cell
that is to receive data.

This part of the operand identifies
the register whose contents are
to be stored.

Op-code 3 means
to store the contents
of a register in a
memory cell.

Instruction

Figure 2.6 Decoding the instruction 35A7

Example machine language
Example machine language

Data
Represenatation

Data Compression

Error Correction
Computer
Architecture

25 / 29

Instructions:
Op-code Operands Meaning

1 RXY Load reg R from memory cell XY
2 RXY Load reg R with value XY
3 RXY Store contents of reg R in cell XY
4 0RS Move contents of reg R to reg S
5 RST Add two’s compl. contents of reg S to reg T;

store result in R
6 RST Foating point add
7 RST OR
8 RST AND
9 RST XOR
A R0X Rotate reg R X bits to right
B RXY Jump to XY if c(R) = c(0)
C 000 HALT

Note operands are hexadecimal.

Example machine language

82 Chapter 2 Data Manipulation

As another example of how the operand field is used to clarify the general
instruction given by op-code, consider an instruction with the op-code 7 (hexa-
decimal), which requests that the contents of two registers be ORed. (We will see
what it means to OR two registers in Section 2.4. For now we are interested
merely in how instructions are encoded.) In this case, the next hexadecimal digit
indicates the register in which the result should be placed, while the last two
hexadecimal digits indicate which two registers are to be ORed. Thus the instruc-
tion 70C5 translates to the statement “OR the contents of register C with the con-
tents of register 5 and leave the result in register 0.”

A subtle distinction exists between our machine’s two LOAD instructions.
Here we see that the op-code 1 (hexadecimal) identifies an instruction that loads
a register with the contents of a memory cell, whereas the op-code 2 (hexa-
decimal) identifies an instruction that loads a register with a particular value.
The difference is that the operand field in an instruction of the first type con-
tains an address, whereas in the second type the operand field contains the
actual bit pattern to be loaded.

Note that the machine has two ADD instructions: one for adding two’s com-
plement representations and one for adding floating-point representations. This
distinction is a consequence of the fact that adding bit patterns that represent val-
ues encoded in two’s complement notation requires different activities within the
arithmetic/logic unit from adding values encoded in floating-point notation.

We close this section with Figure 2.7, which contains an encoded version of
the instructions in Figure 2.2. We have assumed that the values to be added are
stored in two’s complement notation at memory addresses 6C and 6D and the
sum is to be placed in the memory cell at address 6E.

156C

166D

5056

306E

C000

Load register 5 with the bit pattern
found in the memory cell at
address 6C.

Load register 6 with the bit pattern
found in the memory cell at
address 6D.

Add the contents of register 5 and
6 as though they were two’s
complement representation and
leave the result in register 0.

Store the contents of register 0
in the memory cell at address 6E.

Halt.

Encoded
instructions Translation

Figure 2.7 An encoded version of the instructions in Figure 2.2

Computer Architecture

• A computer follows a
program stored in its memory
by copying the instructions
from memory into the CPU as
needed.

• Once in the CPU, each
instruction is decoded and
obeyed

• execution process
•  instruction register and the
program counter

Machine Language

Program
Execution

Computer Architecture

• The CPU performs its job by
continually repeating an
algorithm that guides it
through a three-step process
known as the Machine cycle:
•  fetch — get next instr.,
increment program counter by 2

• Decode
• execute (instr)

Machine Language

Program
Execution

The Machine Cycle

84 Chapter 2 Data Manipulation

machine cycle are fetch, decode, and execute (Figure 2.8). During the fetch step,
the CPU requests that main memory provide it with the instruction that is stored
at the address indicated by the program counter. Since each instruction in our
machine is two bytes long, this fetch process involves retrieving the contents of
two memory cells from main memory. The CPU places the instruction received
from memory in its instruction register and then increments the program
counter by two so that the counter contains the address of the next instruction
stored in memory. Thus the program counter will be ready for the next fetch.

With the instruction now in the instruction register, the CPU decodes the
instruction, which involves breaking the operand field into its proper compo-
nents based on the instruction’s op-code.

The CPU then executes the instruction by activating the appropriate cir-
cuitry to perform the requested task. For example, if the instruction is a load
from memory, the CPU sends the appropriate signals to main memory, waits for
main memory to send the data, and then places the data in the requested regis-
ter; if the instruction is for an arithmetic operation, the CPU activates the appro-
priate circuitry in the arithmetic/logic unit with the correct registers as inputs
and waits for the arithmetic/logic unit to compute the answer and place it in the
appropriate register.

Once the instruction in the instruction register has been executed, the CPU
again begins the machine cycle with the fetch step. Observe that since the pro-
gram counter was incremented at the end of the previous fetch, it again provides
the CPU with the correct address.

A somewhat special case is the execution of a JUMP instruction. Consider, for
example, the instruction B258 (Figure 2.9), which means “JUMP to the instruction
at address 58 (hexadecimal) if the contents of register 2 is the same as that of reg-
ister 0.” In this case, the execute step of the machine cycle begins with the com-
parison of registers 2 and 0. If they contain different bit patterns, the execute step

1. Retrieve the next
 instruction from
 memory (as indicated
 by the program
 counter) and then
 increment the
 program counter.

Fe
tc

h

Decode

Execute

3. Perform the action
 required by the
 instruction in the
 instruction register.

2. Decode the bit pattern
 in the instruction register.

Figure 2.8 The machine cycle

An Example of Program Execution

86 Chapter 2 Data Manipulation

An Example of Program Execution
Let us follow the machine cycle applied to the program presented in Figure 2.7,
which retrieves two values from main memory, computes their sum, and stores
that total in a main memory cell. We first need to put the program somewhere in
memory. For our example, suppose the program is stored in consecutive
addresses, starting at address A0 (hexadecimal). With the program stored in this
manner, we can cause the machine to execute it by placing the address (A0) of the
first instruction in the program counter and starting the machine (Figure 2.10).

The CPU begins the fetch step of the machine cycle by extracting the
instruction stored in main memory at location A0 and placing this instruction
(156C) in its instruction register (Figure 2.11a). Notice that, in our machine,
instructions are 16 bits (two bytes) long. Thus the entire instruction to be fetched
occupies the memory cells at both address A0 and A1. The CPU is designed to
take this into account so it retrieves the contents of both cells and places the bit
patterns received in the instruction register, which is 16 bits long. The CPU then
adds two to the program counter so that this register contains the address of the
next instruction (Figure 2.11b). At the end of the fetch step of the first machine
cycle, the program counter and instruction register contain the following data:

Program Counter: A2
Instruction Register: 156C

Next, the CPU analyzes the instruction in its instruction register and con-
cludes that it is to load register 5 with the contents of the memory cell at address
6C. This load activity is performed during the execution step of the machine
cycle, and the CPU then begins the next cycle.

This cycle begins by fetching the instruction 166D from the two memory
cells starting at address A2. The CPU places this instruction in the instruction

CPU Main memory

Registers

Program counter

Instruction register

Bus
0

1

2

F

A0

CellsAddress

15A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

6C

16

6D

50

56

30

6E

C0

00

Program counter contains
address of first instructions.

Program is
stored in
main memory
beginning at
address A0.

.

.

.

Figure 2.10 The program from Figure 2.7 stored in main memory ready for execution

At the end of the fetch
step of the first machine
cycle, the program
counter and instruction
register contain the
following data:

Program Counter: A2
Instruction Register: 156C

872.3 Program Execution

register and increments the program counter to A4. The values in the program
counter and instruction register therefore become the following:

Program Counter: A4
Instruction Register: 166D

Now the CPU decodes the instruction 166D and determines that it is to load
register 6 with the contents of memory address 6D. It then executes the instruc-
tion. It is at this time that register 6 is actually loaded.

Since the program counter now contains A4, the CPU extracts the next
instruction starting at this address. The result is that 5056 is placed in the
instruction register, and the program counter is incremented to A6. The CPU
now decodes the contents of its instruction register and executes it by activating
the two’s complement addition circuitry with inputs being registers 5 and 6.

During this execution step, the arithmetic/logic unit performs the requested
addition, leaves the result in register 0 (as requested by the control unit), and
reports to the control unit that it has finished. The CPU then begins another
machine cycle. Once again, with the aid of the program counter, it fetches the

Bus

Bus

CPU Main memory

CellsAddress

15A0

A1

A2

A3

6C

16

6D

Instruction register

Program counter

A0

156C

a. At the beginning of the fetch step the instruction starting at address A0 is
 retrieved from memory and placed in the instruction register.

CPU Main memory

CellsAddress

15A0

A1

A2

6C

16

A3 6D

Instruction register

Program counter

A2

156C

b. Then the program counter is incremented so that it points to the next instruction.

Figure 2.11 Performing the fetch step of the machine cycle

Assignment
• Read chapter 2 to end of 2.3 (page 90)
• Report a summary of your reading
• Quiz next week

