
1

Automatic Neurosurgery Planning by Finding the Safest

Path in 3D Images

Yasmine El-Glaly

yasmineg@vt.edu

Abstract

In this paper, we investigate the problem of automatically finding the safest path

from an incision point to a target point in order to help the surgeon plan and practice

before performing the neurosurgery in real. The input to our proposed system is a

segmented 3D image that the incision point, the region of interest, and the vital

functional areas are marked on it. Our proposed method will convert the 3D image

into weighted graph. Then we will find the shortest path using Dijkstra algorithm.

1. Introduction

With a wide range of applications of computer in the graphics, medical imaging

technology has also developed a lot. It helps surgeons to complete operations more

intuitively and accurately, simplifying the complex process of surgery. Planning of

neurosurgery path is an important aspect and application of medical image processing.

It could find the best path through scientific basis to reduce the difficulty and risk of

surgery and to improve surgical precision. Planning brain surgery together with other

medical image processing, needs to reconstruct three-dimensional structure of the

brain based on accurate data of two-dimensional image by equipments like CT and

MRT, and then to do the analog image denoising processing through mathematical

algorithms as well as the final three-dimensional display.

Functional magnetic resonance imaging (fMRI) has become a versatile noninvasive

tool for studying the functionality of the brain and for localizing cognitive functions.

Nowadays, fMRI is not only used in the neurosciences but also in applications such as

presurgical planning. For example, in neuro-oncologic brain surgery, the goal is to

maximize tumor resection or to perform epilepsy surgery while preserving important

brain functions. Presurgical fMRI can be used to localize motor, sensory, and

language-control areas, and has been used to study cerebral reorganization in tumor

patients. In general, activation in the brain is indirectly measured by utilizing the

blood oxygenation level dependent (BOLD) effect as a natural contrast sensitive to

neural activity [1].

Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that

enables the measurement of the restricted diffusion of water in tissue in order to

produce neural tract images instead of using this data solely for the purpose of

assigning contrast or colors to pixels in a cross sectional image. It also provides useful

structural information about muscle—including heart muscle, as well as other tissues

such as the prostate. In DTI, each voxel therefore has one or more pairs of parameters:

a rate of diffusion and a preferred direction of diffusion—described in terms of three

dimensional space—for which that parameter is valid. The properties of each voxel of

a single DTI image is usually calculated by vector or tensor math from six or more

different diffusion weighted acquisitions, each obtained with a different orientation of

the diffusion sensitizing gradients [2].

http://en.wikipedia.org/wiki/Magnetic_resonance_imaging

2

It is becoming normal to register images from fMRI with anatomical MR images to

analyze and identify important regions pertaining to the neurosurgery, see figure 1.

Recently fiber tracking, the reconstruction of microstructural characteristics in the

brain and central nervous system are achieved using diffusion tensor imaging (DTI)

[2].

Figure 1 (a) fMRI data (b) DTI data

2. Related Work

Brain Surgery Path Planning System is the most important part of The Computer-

Assisted Surgery. The relevance for automated path planning becomes clear in the

work of Brunenberg et al. [3]. Their partnering neurosurgeons estimate a time gain of

30 minutes during pre-operative planning when using the authors’ method for

automated trajectory proposition, which effectively means that the planning time is

halved. A segmentation of anatomy is performed in terms of blood vessels, ventricles

and sulci of the cortex. An Euclidean distance map allows the calculation of paths

with maximum distance to critical structures and thus minimal risk.

Rieder et al. [4], proposed a technique to suggest the safest path to the damaged area

in the brain without putting the functional areas at risk. After visualization phase is

completed as discussed in section 4, the surgeon now can search for the optimal path

between the point of incision and the ROI point. In the internal view, the path is

represented by a line connecting the two points, while in the external view it is

represented by a cylinder. The path is very flexible, the view is updated accordingly,

and the path thickness (cylinder radius) and direction can be changed.

The beauty in their method is that the surgeon can explore the path while observing

the functional areas around the path at the same time. After the path is computed and

visualized as shown in figure 2, they add landmarks to the brain and the skull to give

more support for the surgeons.

Figure 2. (a) Computation of the cylindrical path from entry point to region of interest. (b) The

cylindrical cut geometry [4].

Regarding the visualization methods, the paper didn't actually present a new

technique although they combine previously known enhancement methods in one

integrating system. The authors assumed that the path to the region of interest should

be a straight line. Their system needs to be more generalized to make it possible for

3

the user to explore more complicated forms of paths, putting into consideration that a

tumor can exist in a deep difficult area in the brain and the surgeon must take more

than straight line move to reach it. Also, it will be more convenient if the system

enable the user to compare between different paths at the same time to choose the

safest path in case there is no optimal path.

3. Specific Aims

We suppose that the volumetric data obtained from medical scanners to patient's

brain e.g. fMRI and DTI are used to construct 3D images. After visualizing the

patient's data, further processing is conducted to mark the functional areas in the

brain. We obtain segmented images that detect the important parts within the

visualized data.

The objective of the research is to automatically planning the path for the

neurosurgery with minimal interaction from the surgeon. Thus we want to explore the

different possible paths from the incision point to the target point without passing

critical areas and then rank the safest path which minimizes the risk factor.

4. Methodology

The inputs to the system we built which are defined by the user are as follows:

1. The "Can't be touched" points; which are the points that the surgeon must not

go through it because of its vital importance for the patient.

2. The entry point; which is the point the user will select to begin the surgery

from it i.e. the incision point.

3. The target point; which is the point the surgeon wants to achieve to remove a

tumor or the damaged part of the brain.

The main steps we followed to compute the safest path between the incision point and

the target point can be summarized as follows:

1. Convert the input segmented image into graph. Each voxel in the segmented

image will represent a node in the graph.

2. Assign weights over the edges according to the vitality of the area that the

edge is crossing.

3. Compute the shortest path between the input node and the target node as given

by the user.

From this new perspective, we have transformed our problem into a single source

shortest path problem.

In order to perform the first step in our designed algorithm efficiently, we tried to

decrease the number of nodes in the to-be constructed graph to save the computational

power.

So, instead of naively convert every voxel in the image into a node, we will represent

every group of voxels with one node in the corresponding graph based on a similarity

measurement. This problem can be solved as an optimization problem [5]. For every

two voxels in the input image, they will be connected into one group if the change in

the density between the two voxels is minimized, under the constraint that they are

26-neighborhooded connectivity as shown in figure 3.

The similarity measurement can be calculated using the following optimization

function:

4

Where F is the given image, x,y, and z are the three dimensions of F.

To discretize the previous equation, the central finite difference is used as shown in

the following equation:

The equation is solved such that the following constraint:

 The voxels are connected by 26 neighborhood connectivity

Each group will then be represented by one node.

Figure 3. 26 connectivity

Moving to the second step, it could be done manually by the user or automatically by

the system. Following the first option, the user can mark the region(s) of interest and

give an arbitrary value for each region.

If the user chooses the automatic building for the weight matrix, the system assigns

large scalar value for the edges crossing the vital areas in the brain. While the edges

that cross safe areas with minimal risk are assigned to very small scalar values. By

such procedure, the algorithm is encouraged to select the safest path for the in

planning neurosurgery.

The system definitions for the safe/critical regions in the image are based on the

voxels value. This is done by thresholding function to determine which regions

belong to the different parts that can be detected from the MRI images such as the

white matter, gray matter, bone, tissues, nerves, and lesion. More details about

implementing these two steps can be found in the appendix.

Finally, the third step of the proposed algorithm is implemented using Dijkstra

algorithm [6]. We will: 1) Add a label for each node, 2) calculate the distance

function to get the shortest path which is the safest path in our problem.

As we got from the previous steps the positions of the nodes and the weights of the

edges, we use the index of the participating pixel as its label. This is very important in

our case so that we can traverse the safest path on the medical image after we define it

on the graph. The Dijkstra algorithm can be simply summarized as follows:

 





















.min)()()(2

2

2
2

2

2
2

2

2

dF
z

F

y

F

x

F














ijk

ijkijkijk

ijkkijkij

ijkjkijki

fff

fff

fff

.min])2(

)2(

)2[(

2

11

2

11

2

11

5

1. Assign to every node a distance value. Set it to zero for our initial node and to

infinity for all other nodes.

2. Mark all nodes as unvisited. Set initial node as current.

3. For current node, consider all its unvisited neighbors and calculate their

distance (from the initial node). If this distance is less than the previously

recorded distance (infinity in the beginning, zero for the initial node),

overwrite the distance.

4. When we are done considering all neighbors of the current node, mark it as

visited. A visited node will not be checked ever again; its distance recorded

now is final and minimal.

5. If all nodes have been visited, finish. Otherwise, set the unvisited node with

the smallest distance (from the initial node) as the next "current node" and

continue from step 3.

5. Results and Discussion

All the images used during this research are for anonymous patients. The images

are in DICOM (Digital Imaging & Communications in Medicine) format. It is a

standard format for medical images and widely used by the different systems, printers,

scanners and workstations [7]. Sample data can be found in the medical dataset in [8].

The developed system is implemented using MATLAB 7.10.0 and Image Processing

Toolbox 4.1. The system is experimented on 2.0 GHz computer with 3.0 GB RAM

under Windows Vista operating system.

Beginning by applying the first step in our algorithm, we find that grouping the voxels

with very similar values into one region has their mean value, made huge difference

in the performance of the shortest path algorithm.

In our experiments, we examined two cases. In the first case we convert the input

image to a graph where every pixel in the image became a node. That means that if an

input image with low resolution e.g. 500*500, we will need to build a matrix of size

250000*250000 to get the sparse matrix of this new graph or at least 250000*8 to

indicate the full connectivity between each pixel and its neighbors.

In the second case, we apply the grouping procedure as described in section 4. Using

the same image with the same resolution, it is converted into graph with only 100

nodes. Its sparse matrix is of size 100*100, and the full connectivity matrix is 100*8.

Downsizing the number of nodes in the graph with this rate leads to great

enhancement in the performance of the system.

In figure 4, it is shown a sample MRI scan for an anonymous patient that is displayed

using DICOM viewer [9] in part (a) and its computed segmentation in part (b) using

Matlab code.

6

Figure 4. a)MRI scan b) Computed MRI scan

With respect to the second step in our algorithm, we should note that there is a

compromise between the two options in establishing the weight matrix. The first

option where the user has to input manually the values for the regions of interest is

exhaustive for the user. This is because he is supposed to precisely mark every

separate region and choose a suitable value for it, where the regions are interleaved in

almost all images. Regarding the second option, it is very fast and does not need user

interaction. But the thresholding function is mainly tailored for the MRI dataset we

used in our research; according to the DICOM format. Also, if there exist noise in the

MRI data, it could mislead the thresholding function and thus the weighting function.

From our experiments, we find that the weighting matrix is more accurate when

specified by the user though it is much more time consuming.

In figure 5, we show a shot screen of our program where the user is enabled to choose

specific regions using different tools such as the ellipse, rectangle, and line.

Figure 5. Manual selection for regions of interest.

In order to navigate through the different slices of the MRI scans, we use a

sliceomatic which is a volume slice visualization GUI. It can be downloaded from

Matlab Central official website. This tool was of a great importance to us as it was the

7

main tool we use to visualize our input and computed data. A screenshot for

Sliceomatic is shown in figure 6.

Figure 6. Sliceomatic GUI

Finally, we examine different incision and target points to find the safest path between

them among all other possibilities. We applied Dijkstra algorithm directly to the graph

obtained from the previous steps. It succeeds to find the safest path as it is apparently

does not cross the critical regions. Though visualizing the shortest path between 800

nodes on a graph can be somewhat clear, it is not the case when it is mapped to the

medical image. We find that copying the shortest path and plotting it to the original

image will result a total mess. Rather, we repeat the first module in our algorithm to

get more smoothness in the image and so bigger areas for the regions. This further

processing was needed for visualization aspects only. Figure 7 shows that problem

clearly. We should also note that in part (b) we choose an incision point that is

relatively close to the target point and that what makes that figure neat.

Figure 7. Shortest path using Dijkstra algorithm a) on 1000 nodes and b) on 100 nodes

6. Conclusions

In this paper, we present a new system in the field of computer aided neurosurgery

planning. The objective the system achieved is to find the safest path the

8

neurosurgeon can access during the surgery with minimum risk to the patient. The

presented system enhances the overall performance of searching procedure; by first

minimize the image nodes to a defined threshold, and then applying one of the most

powerful single source shortest path algorithms which is Dijkstra.

In future work, we plan to modify the proposed algorithm so that it can be run in

parallel using more advanced hardware. Parallel processing of the data will give us

the facility to use images with higher resolution and so more accurate results will be

obtained. That is in addition to speed and reliability that parallelism inherently

ensures. Also, we are working on more visualization facilities to be added to our

system such as traversing the safest path along the slices of the MRI scans so that it

can be visualized in 3D.

References

[1] K. Tabelow, J. Polzehl, A. M. Ulu˘g,J. P. Dyke, R. Watts, L. A. Heier, and H. U.

Voss. 2008. Accurate Localization of Brain Activity in Presurgical fMRI by

Structure Adaptive Smoothing. IEEE Transactions On Medical Imaging. Vol. 27,

No. 4, April 2008.

[2] T. Schultz, N. Sauber, A. Anwander, H. Theisel, and H.P. Seidel. 2008. Virtual

Klingler dissection: Putting fibers into context". Computer Graphics

Forum(Proceedings of EuroVis. 27(3):1063–1070.

[3] Ellen J. L. Brunenberg and Anna Vilanova and Veerle Visser-Vandewalle and

Yasin Temel and Linda Ackermans and Bram Platel and Bart M. ter Haar

Romeny, Automatic Trajectory Planning for Deep Brain Stimulation: A

Feasibility Study, Medical Image Computing and Computer-Assisted Intervention

(MICCAI), vol. 4791, 2007, pp. 584-592

[4] Christian Rieder, Felix Ritter, Matthias Raspe, and Heinz-Otto Peitgen. 2008.

Interactive Visualization of Multimodal Volume Data for Neurosurgical Tumor

Treatmen. Eurographics/ IEEE-VGTC Symposium on Visualization.

[5] Victor Lempitsky. 2008. Surface Extraction from Binary Volumes with Higher-

Order Smoothness. Technical Report in Microsoft Research.

[6] K.H. Sharkawi, M.U. Ujang and A. Abdul-Rahman. 2008. 3D Navigation System

For Virtual Reality Based On 3d Game Engine. The International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol.

XXXVII. Part B4. Beijing 2008.

[7] Wahle, A.; Builtjes, J.H.; Oswald, H.; Fleck, E.; , "DICOM-integration in a

heterogeneous environment," Engineering in Medicine and Biology Society, 1996.

Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual

International Conference of the IEEE , vol.3, no., pp.1228-1229 vol.3, 31 Oct-3

Nov 1996.

[8] http://www.barre.nom.fr/medical/samples/

[9] DicomWorks, Freeware available at http://dicom.online.fr

Appendix

Code of Part 1 of the algorithm: compute and visualize the nodes of the graph to

be constructed and its corresponding weight matrix.

%filename convention used in image series

http://www.barre.nom.fr/medical/samples/
http://dicom.online.fr/

9

prefix = 'Series 8\I0000';
fnum = 417:476;
ext = '_anon.dcm';

%first filename in series
fname = [prefix num2str(fnum(1)) ext];

%examine file header
info = dicominfo(fname)

%extract size info from metadata voxel_size = [info.PixelSpacing;

info.SliceThickness]'

%read slice images; populate XYZ matrix
hWaitBar = waitbar(0,'Reading DICOM files');
for i=length(fnum):-1:1
 fname = [prefix num2str(fnum(i)) ext];
 D(:,:,i) = uint16(dicomread(fname));
 waitbar((length(fnum)-i)/length(fnum))
end
delete(hWaitBar)
whos D

%% Visualization
%---
 %explore image data using Image Viewer GUI tool
i = 30; %middle slice
im = squeeze(D(:,:,i));
max_level = double(max(D(:)));
imtool(im,[0 max_level])

%custom display - image data
fig1 = figure;
max_level = double(max(D(:)));
imshow(im,[0 max_level])
title('Coronal Slice #30')
set(fig1,'position',[601 58 392 314])
%imview close all
imtool close all

%add intensity legend
colorbar

%change colormap
colormap jet

%3D visualization
%explore 3D volumetric data using Slice-O-Matic GUI tool
addpath('D:\work\Demos\others\sliceomatic')
sliceomatic(double(D))
%ref: submission #780 @ www.mathworks.com/matlabcentral
hSlico1 = gcf;
daspect(1./voxel_size)
movegui('northwest')

%explore rotated 3D volume (new Slice-O-Matic viwer)
if ishandle(hSlico1), delete(hSlico1), end
sliceomatic(double(D))
daspect(1./voxel_size)

10

hSlico2 = gcf;
set(hSlico2,'position',[455 63 560 420])

%intensity distribution

%max_level = double(max(D(:)));
my_map = jet(max_level);
fig2 = figure;

%intensity distribution - top 2/3

subplot(3,1,1:2)
hist(double(im(:)),max_level)
axis([0 max_level 0 900])
title('Distribution')

%color scale - bottom 1/3

subplot(3,1,3)
imagesc(1:max_level)
colormap(my_map)
xlim([0 max_level])
set(gca,'ytick',[])
ylabel('Color Map')
xlabel('Intensity')
set(fig2,'position',[22 60 560 300],'render','zbuffer')
set(fig1,'position',[601 68 392 314])
figure(fig1)

%% Segmentation
im = imrotate(squeeze(D(30,:,:)),90);
figure(hSlico2)
thresh_tool(im)
D1 = D;

%apply thresholding rules
D(D<=40) = 0;

D(D>=100) = 0;
D(:,:,1:60) = 0;

update_sliceomatic(double(D),hSlico2)

%erode away thick layer (dissolve thin surrounding tissues)
blk = ones([3 7 7]);
D = imerode(D,blk);
update_sliceomatic(double(D),hSlico2)

%isolate brain mass
lev = graythresh(double(im)/max_level) * max_level;
bw = (D>=lev);
L = bwlabeln(bw);

%connected region properties - how many, how big?
stats = regionprops(L,'Area')
A = [stats.Area];
biggest = find(A==max(A))

%remove noise
D(L~=biggest) = 0;
update_sliceomatic(double(D),hSlico2)

%grow back main region

D = imdilate(D,blk);

11

update_sliceomatic(double(D),hSlico2)

%separate white vs. gray matter
im = imrotate(squeeze(D(30,:,:)),90);
figure(hSlico2)
lev2 = thresh_tool(im,'gray')

%partition brain mass

lev2 = 67;
L = zeros(size(D)); %0=outside brain (head/air)
L(D<lev2 & D>0) = 2; %2=gray matter
L(D>=lev2) = 3; %3=white matter

%new Slice-O-Matic viewer

sliceomatic(L)
hSlico3 = gcf;
daspect(1./voxel_size)
set(hSlico3,'position',[455 63 560 420])

%% Volumetric Measurements (voxel counting)
%--
%total volume of brain

brain_voxels = length(find(L(:)>1));
brain_volume = brain_voxels*prod(voxel_size)/1e6

%volume of gray matter
gray_voxels = length(find(L(:)==2));
gray_volume = gray_voxels*prod(voxel_size)/1e6

%volume of white matter
white_voxels = length(find(L(:)==3));
white_volume = white_voxels*prod(voxel_size)/1e6

%density calculations
gray_fraction = gray_volume/brain_volume
white_fraction = white_volume/brain_volume

return

%% Separate head from background for visualization (advanced

maneuver)
%--

%duplicate data
L1 = L;

%exterior of head (connected inside through ears)
%new Slice-O-Matic viewer (binary data)
BW = (D1<lev1);

%melt away layer (separate small interior volumes)
BW = imerode(BW,blk);
%update_sliceomatic(double(BW),hSlico3)

%how many connected regions?
L = bwlabeln(BW);
stats = regionprops(L,'Area')

12

%which one biggest?

A = [stats.Area];
biggest = find(A==max(A))
BW(L~=biggest) = 0;
%update_sliceomatic(double(BW),hSlico3)

%grow layer back
BW = imdilate(BW,blk);

%label head voxels

L = L1;
L(BW<1 & L1<2) = 1; %1=head (0=air, 2=gray, 3=white)

%update final display
update_sliceomatic(L,hSlico3)

Apply_dijkstra.m

