
1

Peer to Peer Media Streaming Systems

Survey Paper

Yasmine Nader El-Glaly

VT, CS

yasmineg@vt.edu

Abstract

In recent years, audio/video streaming has become a popular class of applications

and a major consumer of network bandwidth. In this paper, we survey the problem of

streaming media systems through the internet using peer to peer overlay network.

There are three main different topologies of peer to peer media streaming systems;

the single tree, multiple tree, and the hybrid topology. We study three applications;

each of them implement a different topology, so as we can see the advantages and

disadvantages of each topology.

1. Introduction

1.1 Media Streaming Overview

 In media streaming systems, a client

consumes the content of a media file

while the file is being downloaded,

termed as the play-while-downloading

mode [1]. At any time a client machine

can request an audio/video file from a

server. In most of the existing stored

audio/video applications, after a delay of

a few seconds the client begins to

playback the audio file while it continues

to receive the file from the server. The

feature of playing back audio or video

while the file is being received is called

streaming. Many of the existing products

also provide for user interactivity, e.g.,

pause/resume and temporal jumps to the

future and past of the media file.

 Streaming media enables real-time and

continuous delivery of video and audio

data in a fashion of “flow”, i.e., once the

sender begins to transmit, the receiver can

start playback almost at the same time

while it is receiving media data from the

sender, instead of waiting for the entire

media file to be ready in the local storage.

Unlike normal data file, a streaming

media file is huge, thus requires high

channel bandwidth. Moreover, streaming

media also carries stringent demand in the

timing of packet delivery. The large size

of the streaming media as well as its

delivery timing requirement causes a

streaming media server to be expensive to

set up and run.

1.2 P2P Overview

 P2P, as shown in figure 1, overlay

networks are distributed systems in

nature, without any hierarchical

organization or centralized control. Peers

form self-organizing overlay networks

that are overlayed on the Internet Protocol

(IP) networks, offering a mix of various

features such as robust wide-area routing

architecture, efficient search of data

items, selection of nearby peers,

redundant storage, permanence,

hierarchical naming, trust and

2

authentication, anonymity, massive

scalability and fault tolerance. Peer-to-

peer overlay systems go beyond services

offered by client-server systems by

having symmetry in roles where a client

may also be a server. It allows access to

its resources by other systems and

supports resource sharing, which requires

fault-tolerance, self-organization and

massive scalability properties [2]. In P2P

systems, there are no central servers.

Every node acts both as a client and a

server. This approach solves efficiently

the scalability problem and distributes the

load and the network bandwidth among

all participating nodes or peers. This

strategy solves also the bottleneck

problem since no central server is

responsible for handling all the incoming

requests. Any peer in the system could

respond to user queries given the

necessary resources and computational

capability.

 A P2P system forms an overlay

network where resources are shared

among all participants. Information is

also exchanged directly without the

involvement of a third party and without

the need of a centralized coordination.

Another key feature of P2P systems is the

volatility of the network connections.

Peers operate outside the DNS, which is

mainly characterized by its static nature,

where nodes rarely change their topology.

Peers can join and leave the P2P network

at any time in a flexible manner without

harming the functionality of other peers.

Figure 1: The Peer-to-Peer versus the Client/Server approach

3

1.3 P2P Streaming Media System

 A simple and straightforward way of P2P

streaming implementation is to use the

technique of application-layer multicast

(ALM). With ALM, all peer nodes are self-

organized into a logical overlay tree over the

existing IP network and the streaming data

are distributed along the overlay tree. The

cost of providing bandwidth is shared among

the peer nodes, reducing the burden of the

media server. In application-layer multicast,

data packets are replicated and forwarded at

end hosts, instead of at routers inside the

network.

 Building an efficient P2P streaming

scheme, however, is truly a challenge due to

several issues, including the following:

1) The end-to-end delay from the source to a

receiver may be excessive because the

content may have to go through a number of

intermediate receivers. To shorten this delay

(whereby, increasing the liveness of the

media content), the tree height should be

kept small and the join procedure should

finish fast. The end-to-end delay may also be

long due to an occurrence of bottleneck at a

tree node. The worst bottleneck happens if

the tree is a star rooted at the source. The

bottleneck is most reduced if the tree is a

chain; however, in this case, the leaf node

experiences a long delay. Therefore, apart

from enforcing the tree to be short, it is

desirable to have the node degree bounded.

2) The behavior of receivers is unpredictable;

they are free to join and leave the service at

any time, thus abandoning their descendant

peers. To prevent service interruption, a

robust technique has to provide a quick and

graceful recovery should a failure occur.

3) Receivers may have to store some local

data structures and exchange state

information with each other to maintain the

connectivity and improve the efficiency of

the P2P network. The control overhead at

each receiver for fulfilling such purposes

should be small to avoid excessive use of

network resources and to overcome the

resource limitation at each receiver. This is

important to the scalability of a system with

a large number of receivers [3].

 In the rest of this paper, we will discuss

the three topologies with a case study for

each of them with the following order: End

system multicast, Zebra, and Cool

Streaming. Then, we show the differences

among these applications; their strengths and

weaknesses. And finally, open research

issues in P2P media streaming applications

are mentioned.

2. Comparison between P2P Media

Streaming Systems

 Several P2P streaming systems and

algorithms have been proposed. P2P media

streaming systems can be classified into

three categories according to their

architecture: central server based, distributed

based, and hierarchy based. “Central server

based” means that there is a central server in

the system which is responses for the peer

management and distribution tree

construction. In comparison, “distributed

based” system doesn’t have such central

server, all the peer management operations

and tree construction are distributed. The

“hierarchy based” approach organizes peers

into multiple layer hierarchical cluster, thus

increases the system scalability.

 According to the approach to organize

peers and builds distribution tree, current

systems can be classified into three

categories, single tree, multiple trees, and

mesh topology. Tree-based overlays have

been a popular choice because a tree

structure spans all peers, systematically

avoiding the delivery of duplicate packets. In

this approach, either one or multiple

complementary spanning trees are

constructed for data delivery.

4

2.1 Single Tree Topology

 End System Multicast (ESM) belongs to

this category. It is one of the pioneers of P2P

media streaming systems [4]. ESM is a

complete infrastructure for media

broadcasting, implemented by Carnegie

Mellon University. ESM is no longer under

active development by researchers at CMU.

In 2006, several members of the ESM

research group founded Rinera Networks in

order to commercialize the ESM technology.

In 2008, Rinera Networks changed its name

to Conviva. ESM allows broadcasting

audio/video data to a large pool of users. The

information is delivered following a

traditional single-tree approach, which

implies that any given peer receives streams

from only one source. In IP Multicast data is

delivered from the source to recipients using

an IP Multicast tree composed of the shortest

paths from each recipient to the source.

Routers receive a single copy of the packet

but forward it along multiple interfaces. At

most one copy of a packet is sent over any

physical link. Each recipient receives data

with the same delay as though the end

system were sending to it directly by unicast.

Unfortunately, multicast is not available

because of difficulties in implementation and

agreements between ISPs. The only viable

alternative is end-layer multicast. End

System Multicast does not rely on router

multicast. It abstracts the physical topology

as a Complete Virtual Graph (CVG). Further

it tries to construct a spanning tree of the

CVG along which end system could send

data to other recipients.It constructs an

overlay tree to distribute data, and

continuously optimizes this tree to minimize

end-to-end latency. The root of the tree is the

source of the broadcast. This is typically the

machine that encodes the video data. This

machine sends a stream of data packets to the

nodes at the first level of the tree. Each of

those nodes then forwards the data to the

nodes connected to them, and so on, such

that all nodes in the system receive the data

stream. ESM is using "waypoints", machines

from the PlanetLab test-bed [5], which help

to increase the resource availability within

the system and act as stable backbone for the

overlay distribution tree. They also support a

contributor-aware policy rather than a first-

come-first-served approach. In a contributor-

aware policy, the system knows which peers

participate actively in the network based on

resource availability or processing time. A

contributor (peer which can get children) is

then assigned more resources over a free-

rider (peer who does not accept any child

within the distribution tree or which is not so

active). The first-come-first-served approach

does not make any differences between

peers. The first peer, which connects, gets

the service. A key point is to automatically

detect the capabilities of a peer in order to

make best choices when

downloading/uploading data from the

network [6].

 Their system is based on a single tree

overlay which makes it highly sensitive to

peer failures or disconnection. This project

tries to handle receiver heterogeneity by

prioritizing the audio streams, which is

delivered at a low bit rate (20 kbps). A user

with a 56K modem connection should then

be able to receive at least the audio signal.

 Conventional tree-based multicast is

inherently not well matched to a cooperative

environment. The reason is that in any

multicast tree, the burden of duplicating and

forwarding multicast traffic is carried by the

small subset of the peers that are interior

nodes in the tree. Most of the peers are leaf

nodes and contribute no resources. This

conflicts with the expectation that all peers

should share the forwarding load. To address

this problem, forest-based architecture is

used as will be described in the next section,

which constructs a forest of multicast trees

that distributes the forwarding load subject to

the bandwidth constraints of the participating

http://www.conviva.com/

5

nodes in a decentralized, scalable, efficient

and self-organizing manner.

2.2 Multiple Trees Topology

 A typical model of forest based P2P

streaming system is Zebra [7]. Zebra is a

streaming system implemented by the

Massachusetts Institute of Technology

(MIT). This application targets small and

medium size networks (up to hundred nodes)

and uses a two multicast tree streaming

overlay. This application is simple and

provides a good example of multiple trees

based systems. Zebra system is divided into

two parts: the server proxy and client

proxies. As shown in Figure 2, the server

proxy sits between the video server and

client proxies. The client proxy sits between

the client media players and the server proxy.

Zebra’s server and client proxies extend the

Real Networks’ application level RTSP

proxy for UNIX. The key idea of this system

is striping. It divides the constant stream of

data into stripes to improve performance and

robustness. In a peer-to-peer system, the

stream of data is disrupted whenever a client

leaves the system either due to a failure or a

regular disconnects. Since clients receive

pieces of the content from different senders,

they can continue to receive some data even

if one of the senders disconnects.

Data is sent using a peer-to-peer multicast

scheme with striping. The video server sends

one copy of the data to the server proxy,

which forwards this data to two client

proxies. These client proxies then distribute

to other client proxies and their respective

media players.

Each node (client proxy) is a source in one

tree and a leaf in the other tree. A source

forwards the received stream to one or more

child peers. A leaf is located at the bottom of

the tree, which implies that it has no children

and for that reason does not forward any

stream. When a disconnection occurs, only

the direct children reconnect to the tree by

contacting the server proxy. The server

proxy is the main distribution source

interfacing the streaming server. This server

proxy has an important role in the Zebra

system. It first manages the whole overlay.

 The server proxy maintains the stripe

distribution trees, lists of disconnected

nodes, and some client state. In particular, it

manages the following state for each stripe:

• The root node of the distribution tree.

• A list of disconnected nodes and their

subtrees.

• The number of nodes currently serving in

that stripe.

The server proxy manages the following

state for each client node:

• The client’s IP address and port number for

messages.

• The stripe it serves.

• The additional number of nodes it can

serve.

• A list of children nodes.

 Zebra team states that their application

supports at most hundred nodes, this small

amount of users can be then handled

centrally without much trouble. In addition,

the server proxy performs media conversion

on-demand. The proxy server is the main

source of the multicast trees. It splits the data

into two segments (called stripes) and sends

them over two multicast trees. Finally, the

proxy maintains and updates a complete list

of child nodes. Zebra tries to reduce network

traffic by grouping nodes close to each other.

When a new peer joins the network, it first

contacts the proxy server, which provides a

random list of peers currently in the system.

The peer sends then five ICMP messages to

each peer and select the one with lowest

average round trip time. Zebra reduces the

required bandwidth for the server since it

only needs to serve a single copy of the data.

Zebra is successful in sending video data to

all clients. It has been tested for up to 10

clients. For one test case, a server sent

content at 40 kbps to 10 clients, showing

Zebra allows a video source on a cable

6

Figure 2: General system layout.

modem to broadcast video to 10 people.

Furthermore, since it only requires command

line configuration of the server address,

Zebra is simple enough to be run by

a regular Internet user. In order to evaluate

how well the stripe technique increases

tolerance to node failures, in a test case

where a client completely loses one of its

incoming stripes, and is unable to

instantaneously reconnect. In this case, the

client still received some data, allowing for a

degraded level of service as opposed to no

service. Video still appeared on the client

media player, although it was choppy and

included some artifacts. This test proves that

data from the working stripe was able to be

used by the client. Hence, striping proves to

be an effective technique in improving

system robustness.

2.3 Mesh Topology

 In conventional tree-based P2P streaming

architectures, at the same time peer can only

receive data from a single upstream sender.

Due to the dynamics and heterogeneity of

network bandwidths, a single peer sender

may not be able to contribute full streaming

bandwidth to a peer receiver. This may cause

serious performance problems for media

decoding and rendering, since the received

media frames in some end users may be

incomplete. In forest-based systems, each

peer can join many different multicast trees,

and receive data from different upstream

senders.

 However, for a given stripe of a media

stream, a peer can only receive the data of

this stripe from a single sender, thus results

in the same problem like the case of single

tree. Multi-sender scheme is more efficient

to overcome these problems. In this scheme,

at the same time a peer can select and receive

data from a different set of senders, each

contributing a portion of the streaming

bandwidth. In addition, different from the

multi-tree systems, the sender set members

may change dynamically, due to their

unpredictable online/offline status changes,

and the time-variable bandwidth and packet-

loss rate of the Internet. Since the data flow

has not a fixed pattern, every peer can send

and also receive data from each other, thus

the topology of data plane likes mesh. The

main challenges of mesh topology are how to

select the proper set of senders and how to

cooperate and schedule the data sending of

different senders. Examples of mesh-based

multi-sender P2P streaming system include

CollectCast [8], GnuStream [9], and DONet

(CoolStreaming) [10].

7

 CoolStreaming [10] is a data-driven

overlay network for P2P live media

streaming implemented by the Universities

of Hong-Kong and Vancouver. This

application coded in Python language creates

its own overlay P2P network following a

mesh topology. Figure 3 depicts the system

diagram of a CoolStreaming node. There are

three key modules: (1) membership manager,

which helps the node maintain a partial view

of other overlay nodes; (2) partnership

manager, which establishes and maintains

the partnership with other known nodes; (3)

scheduler, which schedules the transmission

of video data. For each segment of the video

stream, a CoolStreaming node can be either a

receiver or a supplier, or both, depending

dynamically on the availability information

of this segment, which is periodically

exchanged between the node and its partners.

An exception is the source node, which is

always a supplier, and is referred to as the

origin node. It could be a dedicated video

server, or simply an overlay node that has a

live video program to distribute. The key

modules in the system are: l. Membership

Management: Each CoolStreaming node has

a unique identifier, such as its IP address,

and maintains a membership cache (mCache)

containing a partial list of the identifiers for

the active nodes in the CoolStreaming. In a

basic node joining algorithm, a newly joined

node first contacts the origin node, which

randomly selects a deputy node from its

mCache and redirects the new node to the

deputy. The new node can then obtain a list

of partner candidates from the deputy, and

contacts these candidates to establish its

partners in the overlay. 2. Partnership

Management: As said, neither the

partnerships nor the data transmission

directions are fixed in CoolStreaming. More

explicitly, a video stream is divided into

segments of a uniform length, and the

availability of the segments in the buffer of a

node can be represented by a Buffer Map

(BM). Each node continuously exchange its

BM with the partners, and then schedules

which segment is to be fetched from which

partner accordingly. 3. Scheduling

Algorithm: Given the BMs of a node and its

partners, a schedule is to be generated for

fetching the expected segments from the

partners. For a homogenous and static

network, a simple round-robin scheduler may

work well, but for a dynamic and

heterogeneous network, a more intelligent

scheduler is necessary. Specifically, the

scheduling algorithm strikes to meet two

constraints: the playback deadline for each

segment, and the heterogeneous streaming

bandwidth from the partners. If the first

constraint cannot be satisfied, then the

number of segments missing deadlines

should be kept minimum, so as to maintain a

continuous playback. CoolStreaming

achieves a smooth video playback and a very

good scalability as well as performance. The

system has been extensively tested over the

PlanetLab test-bed [5]. The overall streaming

rate and playback continuity of

CoolStreaming system is proportional to the

amount of peers online at any given time.

CoolStreaming does not follow some kind of

distribution structure to deliver the media,

but bases its delivery on data-availability.

Fig. 3. A generic system diagram for a DONet node.

8

 The application ran over all active machines

of the PlanetLab test-bed (about 200 nodes).

The average streaming rate was in the order

of 500 kbps with a 60 segments sliding

window (buffer map of 60 bits). Under

dynamic environment (with many peer

joins/departures), the overall control

overhead was low: 1% of the whole traffic.

During a live broadcast sport event,

involving 50000 users, CoolStreaming

system achieved a streaming rate between

450 kbps and 755 kbps using RealVideo and

Windows media as formats.

3. Results

 This survey does not present all available

P2P streaming applications. Many other

systems exist. The chosen applications

describe different methods to perform P2P

media streaming and are examples of

different P2P streaming topologies. ESM and

Zebra base their streaming overlay on a

structural approach. Using trees, the flow of

data is clearly specified from one node to the

other. This approach, mostly adapted to live

streaming, tries to reproduce the IP multicast

scheme. However, these types of system

suffer under highly dynamic networks and

require complex algorithms to rebuild each

tree so that the streaming session does not

get interrupted.

 Other solutions such as CoolStreaming do

not follow any distribution structure and are

based on data availability. Peers

continuously notify each other when new

data is available. The quality of the

streaming session increases when the amount

of peers in the overlay increases, since more

peers mean more resources to choose from.

Based on the achieved streaming rate,

CoolStreaming and ESM are leading. Single-

tree overlay suffers from many drawbacks

such as sensitivity to peer disconnection and

unfair data delivery method. ESM manages

to overcome these problems and provides a

well working application. Based on test

results provided by each project,

CoolStreaming achieves the best streaming

rate and seems to be scalable since it has

been utilized by a large amount of users

(over 10000).

 None of the listed software enables

streaming to mobile devices. Their main

focus is to deliver the best possible streaming

quality to a large pool of users. The

downside is that end-users need to have an

advanced computer with broadband or

Ethernet network access in order to process

and view the stream properly.

A summary for the main differences among

the discussed applications is illustrated in

table 1.

9

Table 1. P2P media streaming applications comparison

 ESM Zebra CoolStreaming

Topology single tree multiple trees mesh topology

Manufacturer Carnegie Mellon

University

Massachusetts

Institute of

Technology (MIT)

Universities of

Hong-Kong and

Vancouver

Number of

supported nodes

Thousands One hundred Tens of Thousands

Streaming rate

(Kbps)

100 to 300 for

video, 20 for audio

40 500

Transport protocol TCP TCP RTP

Split Stream? No Yes Yes

Organization of

peers

Central server-based Central server-based Distributed-based

Key features  1. Use NATs and

firewalls as peers.



 2. Prioritizing the

audio streams.

1. Close peers are

grouped together.

2. Users with

limited bandwidth

can stream live

video.

1. The larger the

data-driven overlay

is, the better the

streaming quality it

delivers.

2. Less sensitive to

peer failures

3. Distributing the

data is simple,

scalable and totally

distributed.

Weakness points Highly sensitive to

peer failures or

disconnection

Server proxy is a

central point of

failure

 Membership

management and

scheduling

algorithms are

complex; cause

overhead

10

4. Conclusion

 Building an efficient P2P media streaming

system confronts several challenges,

including how to organize peers and build

efficient distribution tree, how to handle peer

failure, and how to adapt to the network

dynamics. In this paper we investigate three

popular live media streaming applications,

End System Multicast, Zebra, and

CoolStreaming. Each of them has its own

overlay network topology. They use different

algorithms in building the overlay tree of

connected peers. According to the

approaches to organize peers and build

distribution tree, the P2P media streaming

systems covered by this paper can be

classified into three categories: single tree,

multiple trees, and mesh topology. Single

tree is the simplest architecture but it is very

fragile. Multiple trees, though complicated in

its design, it provides more robustness to the

streaming system. Mesh topology has the

advantages of both previous topologies as

it does not have complex design and yet

provides robust and scalable system.

Scalability depends on the way the system

organize the peers. CoolStreaming has higher

scalability than ESM and Zebra because it is

a distributed system; no central server is

responsible for maintaining the states of the

peers.

5. Open Research Issues

 A lot of enhancements can be further

introduced to P2P media streaming systems.

We briefly are going to mention three issues

that need further research work.

1. Security is one of the main recent research

topics in P2P systems. Different possible

attacks and vulnerabilities have been

identified such as Attacks by self-replication,

Man in the middle attack, denial of service

attacks, routing attacks, Partition attacks.

Research efforts have suggested different

measures to increase the security of P2P

systems that range from cryptography, to

replication, to reputation protocols [11]. Still

security remains a very challenging problem

in P2P systems given the diverse and

dynamic nature of these systems. Security

models need to be intelligent enough to cope

with the constantly changing environment of

the P2P network.

2. QoS is another difficult issue that has to be

addressed. In P2P streaming systems, a

critical requirement is to operate the media

distribution continuously. Hence, the

difficulty resides not only in content

location, but also in resource location, as

peers need to discover which other connected

hosts have enough throughput to act as

forwarders and relay the media stream they

have received. A Robust and Reliable P2P

system should be able to support with an

acceptable levels of QoS under following

conditions: High churn, Node failure or

departure, and Congestion in the interior of

the network. Unavailability of stream content

at play time causes jitter which degrades

QoS. Also, end to end latency should be

minimized. Scalability needs also to be

improved to be able to accommodate a

worldwide participation of users especially

in the business world; increasing number of

nodes should not degrade QoS.

3. As high-bandwidth wireless access

becomes available everywhere through the

wide deployment of wireless networks

(WLAN, ad hoc, and 3G networks) and

various wireless backhaul technologies

(wireless mesh networks and WiMax), there

will be a great demand on streaming

applications such as news on demand

through mobile devices. The techniques used

in P2P media streaming could be applied in

the wireless environment. However, unlike

the Internet, connections in wireless

11

networks are even more dynamic and

unstable. There are many challenges for

wireless P2P systems such as limited radio

bandwidth, limited battery, mobility,

security, and so on. A common problem in

wireless P2P systems is how to utilize P2P

schemes in video streaming and schedule the

video transmission among peers to minimize

the “freeze-ups” in playback caused by

buffer underflow in addition to the desire of

energy efficiency. The Efforts are needed to

cope with the challenges.

References

[1] D. Xu, M. Hefeeda, S. Hambrusch and B.

Bhargava, “On Peer-to-Peer Media

Streaming", IEEE ICDCS 2002, July2002.

[2] Eng Keong Lua, Jon Crowcroft, Marcelo

Pias, Ravi Sharma and Steven Lim, a Survey

and Comparison of Peer-to-Peer Overlay

Network Schemes, IEEE Communications

Survey and Tutorial, March 2004.

[3]Duc A. Tran, Kien A. Hua, and Tai T. Do,

A Peer-to-Peer Architecture for Media

Streaming, IEEE Journal On Selected Areas

In Communications, Vol. 22, No. 1, January

2004.

 [4] Carnegie Mellon University. End System

Multicast.

http://esm.cs.cmu.edu.

[5] http://www.planet-lab.org.

[6] Yank hua Chu, Aditya Ganjam, T.S.

Eugene Ng, and Sanjay G. Rao., "Early

Experience With An Internet Broadcast

System Based On Overlay Multicast",

Technical Report, Carnegie Mellon

University, 2004.

[7] Maya Dobuzhskaya, Rose Liu, Jim

Roewe, and Nidhi Sharma, Zebra: Peer to

Peer Multicast For Live Streaming Video.

Technical Report, Massachusetts Institute of

Technology, 2004.

[8] M. Heffeeda, A. Habib, B. Botev, D. Xu,

and B. Bhargava, “PROMISE: peer-to-peer

media streaming using CollectCast,” Proc.

ACM Multimedia (MM’03), Berkeley, CA,

Nov., 2003.

[9] X. Jiang, Y. Dong, D. Xu, and B.

Bhargava. “GnuStream: A P2P media

streaming prototype”. Proc. the 2003IEEE

International Conference on Multimedia and

Expo (ICME’03), July 2003.

[10] X. Zhang, J. Liu, B. Li, and T.-S. P.

Yum. “CoolStreaming/ Donet: A Data-

Driven Overlay Network For Efficient Live

Media Streaming”. Proc. IEEE

INFOCOM’05, 2005.

[11] Kaoutar El Maghraoui, " Survey of

Peer-to-Peer Systems ", Technical Report,

Rensselear Polytechnic Institute, Troy, NY,

USA.

http://esm.cs.cmu.edu/
http://www.planet-lab.org/

