
INTRODUCTION TO
COMPUTER SCIENCE
Dr. Yasmine El-Glaly
Fall 2013

What is OS?
•  An operating system is the software that controls the overall

operation of a computer.
•  It provides the means by which a user can store and retrieve

files,
•  provides the interface by which a user can request the

execution of programs.

•  It is a computer’s operating system that transforms the
computer hardware into a useful tool.

•  Examples:
•  Windows
•  UNIX

•  Mac
•  Linux (developed by a Finish student in 1991)

Operating systems

•  Utilities — unclear boundaries with other things
anti-virus program, formatting a disk, cryptography

Operating systems

Example Machine
Language

External Devices
Computer
Architecture

Operating Systems

Processes

10 / 22

Operating system — controls operation of computer
controls access to computer’s resources

SOFTWARE

APPLICATIONS
spreadsheets
games
etc.

SYSTEM
provides environment

for applications

UTILITIES OPERATING SYSTEM

Utilities — unclear boundaries with other things
anti-virus program, formatting a disk, operations with resources,
cryptography
browser — no (Internet Explorer?)

Operating Systems
• User interface = shell
■ Command window

 ■ GUI — graphical user interface icons, clicking, windows
manager

systems, tactile sensory devices, and surround sound audio reproduction systems
are subjects of current research.

Although an operating system’s user interface plays an important role in
establishing a machine’s functionality, this framework merely acts as an inter-
mediary between the computer’s user and the real heart of the operating system
(Figure 3.4). This distinction between the user interface and the internal parts of
the operating system is emphasized by the fact that some operating systems
allow a user to select among different interfaces to obtain the most comfortable
interaction for that particular user. Users of the UNIX operating system, for exam-
ple, can select among a variety of shells including the Bourne shell, the C shell,
and the Korn shell, as well as a GUI called X11. The earliest versions of Microsoft
Windows were a GUI application program that could be loaded from the MS-DOS
operating system’s command shell. The DOS cmd.exe shell can still be found as a
utility program in the latest versions of Windows, although this interface is
almost never required by casual users. Similarly, Apple’s OS X retains a Terminal
utility shell that hearkens back to that system’s UNIX ancestors.

An important component within today’s GUI shells is the window manager,
which allocates blocks of space on the screen, called windows, and keeps track of
which application is associated with each window. When an application wants to
display something on the screen, it notifies the window manager, and the win-
dow manager places the desired image in the window assigned to the applica-
tion. In turn, when a mouse button is clicked, it is the window manager that
computes the mouse’s location on the screen and notifies the appropriate appli-
cation of the mouse action. Window managers are responsible for what is gener-
ally called the “style” of a GUI, and most managers offer a range of configurable
choices. Linux users even have a range of choices for a window manager, with
popular choices including KDE and Gnome.

In contrast to an operating system’s user interface, the internal part of an oper-
ating system is called the kernel. An operating system’s kernel contains those
software components that perform the very basic functions required by the com-
puter installation. One such unit is the file manager, whose job is to coordinate
the use of the machine’s mass storage facilities. More precisely, the file manager

1173.2 Operating System Architecture

User User

User User

Kernel

User interface

User

Figure 3.4 The user interface acts as an intermediary between users and the operating
system’s kernel

Basic Functions
• Basic functions in kernel
• 1. File manager
■ directories (folders) — organization
■ path —animals\prehistoric\dinos\intro.pdf
■ allows access, checks rights

• 2. Device drivers
■ printer, screen, mouse, etc.
■ communicate with controllers

Basic Functions
•  3. Memory manager

•  in multiuser or multitask system, much to do
•  virtual memory — if more data than for physical memory
•  store some pages in secondary storage
— if used often, leave there — paging is slow

Basic Functions
•  4. Scheduler and dispatcher

— giving time slices to different tasks or users
•  5. Bootstrap (booting)

•  bootstrap program (boot loader) in ROM (non-volatile)
•  loads rest of OS from disk into main memory (volatile)

(often called a firmware update) the technological limits make mass storage
the most common choice for more traditional computer systems.

In closing we should point out that understanding the boot process as well as
the distinctions between an operating system, utility software, and application
software allows us to comprehend the overall methodology under which most
general-purpose computer systems operate. When such a machine is first turned
on, the boot loader loads and activates the operating system. The user then
makes requests to the operating system regarding the utility or application pro-
grams to be executed. As each utility or application is terminated, the user is put
back in touch with the operating system, at which time the user can make addi-
tional requests. Learning to use such a system is therefore a two-layered process.
In addition to learning the details of the specific utility or application desired,
one must learn enough about the machine’s operating system to navigate among
the applications.

1213.2 Operating System Architecture

Boot
loader

Operating
system

Step 1: Machine starts by executing the boot loader
 program already in memory. Operating
 system is stored in mass storage.

Disk storage

Main memory

ROM

Volatile
memory

Main memory

Boot
loaderROM

Volatile
memory

Step 2: Boot loader program directs the transfer of
 the operating system into main memory
 and then transfers control to it.

Operating
system

Disk storage

Operating
system

Figure 3.5 The booting process

Questions & Exercises

1. List the components of a typical operating system and summarize the
role of each in a single phrase.

2. What is the difference between application software and utility software?
3. What is virtual memory?
4. Summarize the booting procedure.

Ch.3: OS
• Coordinating the Machine’s Activities
• Handling Competition Among Processes
• Security

The Concept of a Process
•  program — instructions
process — execution of program
— 2 users use same program = 2 processes

•  The current status of the activity is called the process

state. This state includes:
•  value of program counter
•  values in other registers
•  values in memory

Scheduler
• Multitasking computers are running many
processes

• OS must
•  give needed resources to processes

 — space in memory, files, devices, etc.
• make sure processes don’t interfere with each other
•  let processes exchange info if needed

Scheduler
•  The scheduler maintains a process table, with info for

each process:
•  memory locations assigned
•  priority of process
•  status of process

•  Ready
•  Running
•  waiting — for external event (completion of read from disk,

etc.)

Dispatcher
•  gets scheduled processes executed by multitasking
•  chooses highest priority (given by scheduler)
•  gives each process its time slice
•  changing processes — process switch/ context switch

•  caused by interrupt
•  dispatcher sets timer to cause interrupt
•  interrupt handler

•  transfers control from process to dispatcher
•  saves and restores process state
•  machine language designed for it

Competition among Processes
• Allocating access to resources

•  sections of code — device driver for printer
• memory addresses

1 process at a time

Competition among Processes
Competition among processors

Example Machine
Language

External Devices
Computer
Architecture

Operating Systems

Processes

19 / 22

flag ? 0 – clear OK
1 – set in use

Problem:
Process 1 Is flag clear?

Yes
interrupt
Process 2 Is flag clear?

Yes
set flag
use printer

interrupt
Process 1 set flag

use printer

Competition among Processes Competition among processors

Example Machine
Language

External Devices
Computer
Architecture

Operating Systems

Processes

19 / 22

flag ? 0 – clear OK
1 – set in use

Problem:
Process 1 Is flag clear?

Yes
interrupt
Process 2 Is flag clear?

Yes
set flag
use printer

interrupt
Process 1 set flag

use printer

Competition among Processes
Possible solutions:

1.  OK disables interrupts when checking flag
— re-enables after done with set
2. test-and-set instruction
— no interrupts in middle of single instruction

The flag is a semaphore (railway signals).
Used to protect critical regions (of code)
which require mutual exclusion.

Competition among Processes
Another problem:

• Process 1 and Process 2
each need same 2 resources
(printer and disk).

• Process 1 gets 1 resource.
• Process 2 gets the other.
• Neither process can

continue. — Deadlock

Competition among Processes
Deadlock can occur if:
1.  There is competition for non-shareable resources
2.  Resources requested on partial basis

— after getting some, may request more
3.  Can’t take resources back
Possible solutions:
• Deadlock detection and correction — remove condition 3
• Spooling

•  device driver saves data (for printer)
•  sends data later

— process continues as if printing completed

Security
• Self reading

Assignment
• Questions:
•  2, 4, 7, 8, 13, 19, 39, 49

