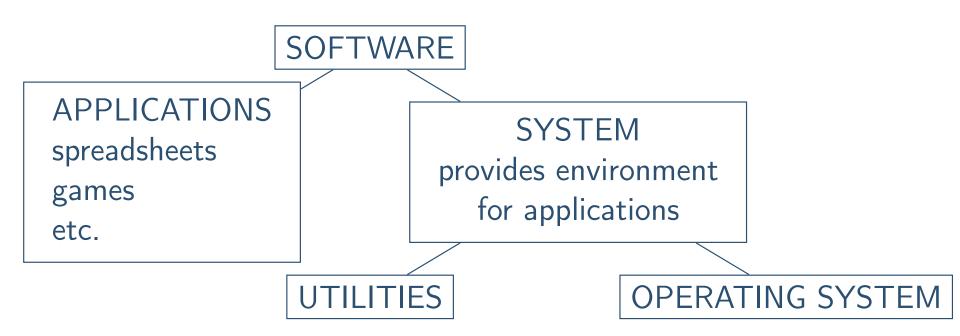
INTRODUCTION TO COMPUTER SCIENCE


Dr. Yasmine El-Glaly

Fall 2013

What is OS?

- An operating system is the software that controls the overall operation of a computer.
- It provides the means by which a user can store and retrieve files,
- provides the interface by which a user can request the execution of programs.
- It is a computer's operating system that transforms the computer hardware into a useful tool.
- Examples:
 - Windows
 - UNIX
 - Mac
 - Linux (developed by a Finish student in 1991)

Operating systems

• Utilities — unclear boundaries with other things anti-virus program, formatting a disk, cryptography

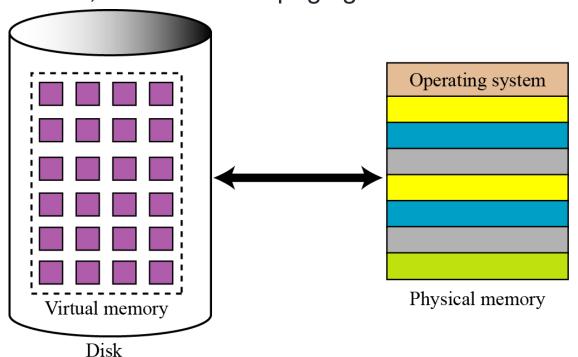
Operating Systems

- User interface = shell
 - Command window

■ GUI — graphical user interface icons, clicking, windows

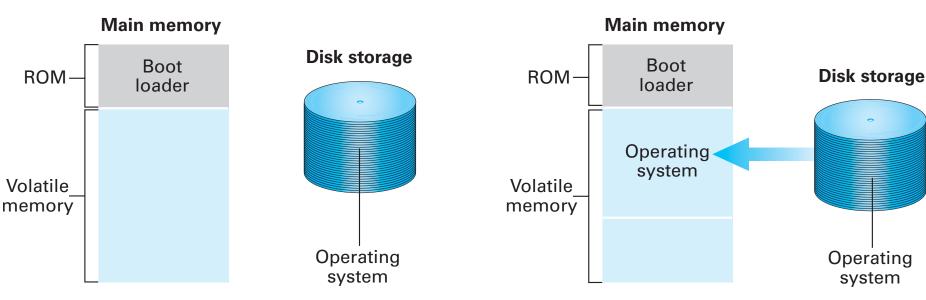
User

User User Kernel User Interface


User

Basic Functions

- Basic functions in kernel
- 1. File manager
 - directories (folders) organization
 - path —animals\prehistoric\dinos\intro.pdf
 - allows access, checks rights
- 2. Device drivers
 - printer, screen, mouse, etc.
 - communicate with controllers


Basic Functions

- 3. Memory manager
 - in multiuser or multitask system, much to do
 - virtual memory if more data than for physical memory
 - store some pages in secondary storage
 - if used often, leave there paging is slow

Basic Functions

- 4. Scheduler and dispatcher
 - giving time slices to different tasks or users
- 5. Bootstrap (booting)
 - bootstrap program (boot loader) in ROM (non-volatile)
 - loads rest of OS from disk into main memory (volatile)

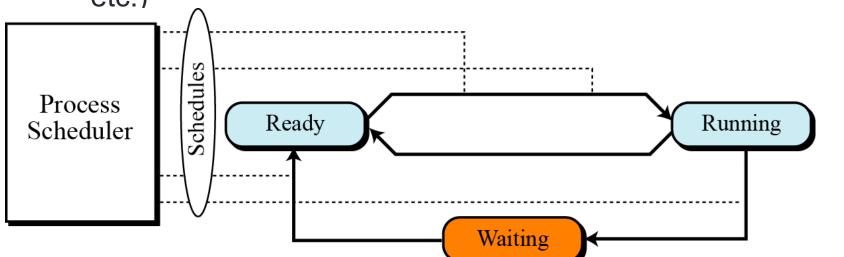
Step 1: Machine starts by executing the boot loader program already in memory. Operating system is stored in mass storage.

Step 2: Boot loader program directs the transfer of the operating system into main memory and then transfers control to it.

Ch.3: OS

- Coordinating the Machine's Activities
- Handling Competition Among Processes
- Security

The Concept of a Process


- program instructions
 process execution of program
- 2 users use same program = 2 processes
- The current status of the activity is called the process state. This state includes:
 - value of program counter
 - values in other registers
 - values in memory

Scheduler

- Multitasking computers are running many processes
- OS must
 - give needed resources to processes
 - space in memory, files, devices, etc.
 - make sure processes don't interfere with each other
 - let processes exchange info if needed

Scheduler

- The scheduler maintains a process table, with info for each process:
 - memory locations assigned
 - priority of process
 - status of process
 - Ready
 - Running
 - waiting for external event (completion of read from disk, etc.)

Dispatcher

- gets scheduled processes executed by multitasking
- chooses highest priority (given by scheduler)
- gives each process its time slice
- changing processes process switch/ context switch
 - caused by interrupt
 - dispatcher sets timer to cause interrupt
 - interrupt handler
 - transfers control from process to dispatcher
 - saves and restores process state
 - machine language designed for it

- Allocating access to resources
 - sections of code device driver for printer
 - memory addresses
- 1 process at a time

flag

0 - clear OK1 - set in use

0 – clear OK

1 – set in use

? flag Problem: Process 1 Is flag clear? Yes interrupt Process 2 Is flag clear? Yes set flag use printer interrupt set flag Process 1 use printer

Possible solutions:

- OK disables interrupts when checking flag
- re-enables after done with set
- 2. test-and-set instruction
- no interrupts in middle of single instruction

The flag is a semaphore (railway signals). Used to protect critical regions (of code) which require mutual exclusion.

Another problem:

Process 1 and Process 2
 each need same 2 resources
 (printer and disk).

- Process 1 gets 1 resource.
- Process 2 gets the other.
- Neither process can continue. — Deadlock

Deadlock can occur if:

- 1. There is competition for non-shareable resources
- 2. Resources requested on partial basis
 - after getting some, may request more
- 3. Can't take resources back

Possible solutions:

- Deadlock detection and correction remove condition 3
- Spooling
 - device driver saves data (for printer)
 - sends data later
 - process continues as if printing completed

Security

Self reading

Assignment

- Questions:
- 2, 4, 7, 8, 13, 19, 39, 49