
INTRODUCTION TO
COMPUTER SCIENCE
Dr. Yasmine El-Glaly
Fall 2013

Review
• Representing Info
•  Integers:

Integers

Flip Flop

Data Storage

Representing Info

Integers

Floating Point

13 / 31

Integers

■ Base 10 — 234 = 2 · 102 + 3 · 101 + 4 · 100 =
∑

2

i=0
di · 10i

Generally dk−1...d1d0 =
∑

k−1

i=0
di · 10i.

■ Base 2 — 11101100 =
1·27+1·26+1·25+0·24+1·23+1·22+0·21+0·20 =

∑
7

i=1
bi ·2i

Generally bk−1...b1b0 =
∑

k−1

i=0
bi · 2i.

Storing Integers

• The most popular system for
representing integers within
today’s computers is two’s
complement notation

• Uses a fixed number of bits
to represent each of the
values in the system

Data Compression
Communication Errors

Storing Integers

• Starting with a string of 0s
and then counting in binary
until the pattern consisting of
a single 0 followed by 1s is
reached

• Negative values are obtained
by starting with a string of 1s
and then counting backward
in binary until the pattern
consisting of a single 1
followed by 0s is reached

Data Compression
Communication Errors

471.6 Storing Integers

1.6 Storing Integers
Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of dig-
ital circuitry. In this section we consider two of these notational systems, two’s
complement notation and excess notation, which are used for representing inte-
ger values in computing equipment. These systems are based on the binary sys-
tem but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation
The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of
two’s complement systems, we will concentrate on smaller systems.

Figure 1.21 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such a

5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 c. 11111 d. 111.11

!1100 ! 1.101 ! 0001 ! 00.01

a. Using patterns of length three b. Using patterns of length four

"
"
"
"
"
"

"

"

"
"
"
"

Figure 1.21 Two’s complement notation systems

Storing Integers

471.6 Storing Integers

1.6 Storing Integers
Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of dig-
ital circuitry. In this section we consider two of these notational systems, two’s
complement notation and excess notation, which are used for representing inte-
ger values in computing equipment. These systems are based on the binary sys-
tem but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation
The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of
two’s complement systems, we will concentrate on smaller systems.

Figure 1.21 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such a

5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 c. 11111 d. 111.11

!1100 ! 1.101 ! 0001 ! 00.01

a. Using patterns of length three b. Using patterns of length four

"
"
"
"
"
"

"

"

"
"
"
"

Figure 1.21 Two’s complement notation systems

Data Compression
Communication Errors

Storing Integers

• In a two’s complement
system, the leftmost bit of a
bit pattern indicates the sign
of the value represented.
Thus, the leftmost bit is often
called the sign bit

Data Compression
Communication Errors

471.6 Storing Integers

1.6 Storing Integers
Mathematicians have long been interested in numeric notational systems, and
many of their ideas have turned out to be very compatible with the design of dig-
ital circuitry. In this section we consider two of these notational systems, two’s
complement notation and excess notation, which are used for representing inte-
ger values in computing equipment. These systems are based on the binary sys-
tem but have additional properties that make them more compatible with
computer design. With these advantages, however, come disadvantages as well.
Our goal is to understand these properties and how they affect computer usage.

Two’s Complement Notation
The most popular system for representing integers within today’s computers is
two’s complement notation. This system uses a fixed number of bits to repre-
sent each of the values in the system. In today’s equipment, it is common to use
a two’s complement system in which each value is represented by a pattern of
32 bits. Such a large system allows a wide range of numbers to be represented
but is awkward for demonstration purposes. Thus, to study the properties of
two’s complement systems, we will concentrate on smaller systems.

Figure 1.21 shows two complete two’s complement systems—one based on
bit patterns of length three, the other based on bit patterns of length four. Such a

5. Perform the following additions in binary notation:
a. 11011 b. 1010.001 c. 11111 d. 111.11

!1100 ! 1.101 ! 0001 ! 00.01

a. Using patterns of length three b. Using patterns of length four

"
"
"
"
"
"

"

"

"
"
"
"

Figure 1.21 Two’s complement notation systems

Storing Integers

• An algorithm for converting
back and forth between +ve
and -ve values of the same
magnitude

Data Compression
Communication Errors

48 Chapter 1 Data Storage

system is constructed by starting with a string of 0s of the appropriate length and
then counting in binary until the pattern consisting of a single 0 followed by 1s is
reached. These patterns represent the values 0, 1, 2, 3, The patterns repre-
senting negative values are obtained by starting with a string of 1s of the appro-
priate length and then counting backward in binary until the pattern consisting
of a single 1 followed by 0s is reached. These patterns represent the values !1,
!2, !3, (If counting backward in binary is difficult for you, merely start at
the very bottom of the table with the pattern consisting of a single 1 followed by
0s, and count up to the pattern consisting of all 1s.)

Note that in a two’s complement system, the leftmost bit of a bit pattern indi-
cates the sign of the value represented. Thus, the leftmost bit is often called the
sign bit. In a two’s complement system, negative values are represented by the
patterns whose sign bits are 1; nonnegative values are represented by patterns
whose sign bits are 0.

In a two’s complement system, there is a convenient relationship between
the patterns representing positive and negative values of the same magnitude.
They are identical when read from right to left, up to and including the first 1.
From there on, the patterns are complements of one another. (The
complement of a pattern is the pattern obtained by changing all the 0s to 1s
and all the 1s to 0s; 0110 and 1001 are complements.) For example, in the 4-bit
system in Figure 1.21 the patterns representing 2 and !2 both end with 10, but
the pattern representing 2 begins with 00, whereas the pattern representing !2
begins with 11. This observation leads to an algorithm for converting back and
forth between bit patterns representing positive and negative values of the same
magnitude. We merely copy the original pattern from right to left until a 1 has
been copied, then we complement the remaining bits as they are transferred to
the final bit pattern (Figure 1.22).

Understanding these basic properties of two’s complement systems also
leads to an algorithm for decoding two’s complement representations. If the
pattern to be decoded has a sign bit of 0, we need merely read the value as

Two’s complement notation
for 6 using four bits

Two’s complement notation
for –6 using four bits

Copy the bits from
right to left until a
1 has been copied

Complement the
remaining bits

0 1 1 0

1 0 1 0

Figure 1.22 Encoding the value !6 in two’s complement notation using 4 bits

Storing Integers

• Addition in Two’s
Complement Notation
• Same algorithm that we used
for binary addition

• Any extra bit generated on the
left of the answer by a final
carry must be truncated

Data Compression
Communication Errors

Storing Integers

• Example

Data Compression
Communication Errors

491.6 Storing Integers

though the pattern were a binary representation. For example, 0110 represents the
value 6, because 110 is binary for 6. If the pattern to be decoded has a sign bit of
1, we know the value represented is negative, and all that remains is to find the
magnitude of the value. We do this by applying the “copy and complement” pro-
cedure in Figure 1.22 and then decoding the pattern obtained as though it were a
straightforward binary representation. For example, to decode the pattern 1010,
we first recognize that since the sign bit is 1, the value represented is negative.
Hence, we apply the “copy and complement” procedure to obtain the pattern
0110, recognize that this is the binary representation for 6, and conclude that the
original pattern represents !6.

Addition in Two’s Complement Notation To add values represented in two’s comple-
ment notation, we apply the same algorithm that we used for binary addition,
except that all bit patterns, including the answer, are the same length. This
means that when adding in a two’s complement system, any extra bit generated
on the left of the answer by a final carry must be truncated. Thus “adding” 0101
and 0010 produces 0111, and “adding” 0111 and 1011 results in 0010 (0111 " 1011 #
10010, which is truncated to 0010).

With this understanding, consider the three addition problems in Figure 1.23.
In each case, we have translated the problem into two’s complement notation
(using bit patterns of length four), performed the addition process previously
described, and decoded the result back into our usual base ten notation.

Observe that the third problem in Figure 1.23 involves the addition of a pos-
itive number to a negative number, which demonstrates a major benefit of two’s
complement notation: Addition of any combination of signed numbers can be
accomplished using the same algorithm and thus the same circuitry. This is in
stark contrast to how humans traditionally perform arithmetic computations.
Whereas elementary school children are first taught to add and later taught to
subtract, a machine using two’s complement notation needs to know only how
to add.

Problem in
base ten

Answer in
base ten

Problem in
two's complement

"

" !

" "

"

"

!

!

!

Figure 1.23 Addition problems converted to two’s complement notation

Storing Integers

• Overflow problem
• When using two’s complement

with patterns of 4 bits, the largest
+ve integer that can be
represented is 7, and the most -ve
integer is -8

• The value 9 can not be
represented, which means that we
cannot hope to obtain the correct
answer to the problem 5 + 4. In
fact, the result would appear as -7

• This phenomenon is called
overflow

Data Compression
Communication Errors

Storing Integers

• Overflow problem
• Today, it is common to use
patterns of 32 bits for storing
values in two’s complement
notation, allowing for positive
values as large as
2,147,483,647 to accumulate
before overflow occurs

• The point is that computers can
make mistakes. So, the person
using the machine must be
aware of the dangers involved

Data Compression
Communication Errors

Storing Integers

• Data Compression
• For the purpose of storing or
transferring data, it is often
helpful (and sometimes
mandatory) to reduce the size
of the data

• The technique for
accomplishing this is called
data compression

Data
Compression
Communication Errors

Storing Integers

• Data compression
• Generic Data Compression

Techniques
• Compressing images
• Compressing audio and video

Data
Compression
Communication Errors

Storing Integers

• Generic Data Compression
Techniques
• Lossless schemes

•  No loss in the info
• Lossy schemes

•  May lead to the loss of info
•  Provides more compression

Data
Compression
Communication Errors

Storing Integers

• Run-length encoding
• Replace sequences of identical

data elements with a code
indicating the element that is
repeated and the number of times
it occurs in the sequence

• For example, less space is
required to indicate that a bit
pattern consists of 253 ones,
followed by 118 zeros, followed by
87 ones than to actually list all 458
bits.

Data
Compression
Communication Errors

Storing Integers

• Run-length encoding
 visualization

Data
Compression
Communication Errors

Storing Integers

• Differential Encoding
•  Record the differences between

consecutive data units rather than
entire units

•  Each unit is encoded in terms of its
relationship to the previous unit

•  Can be implemented in either lossless
or lossy form

• Dictionary encoding: (can be
lossy)
•  Lempel-Ziv methods: most popular for

lossless — adaptive dictionary
encoding

•  Lempel-Ziv-Welch (LZW): used a lot -
GIF

Data
Compression
Communication Errors

Storing Integers

• Images Compression
•  image consists of dots — pixels
■ 0—white; 1—black
■ colors — use more bits —

• red, green, blue components
• 3 bytes per pixel
• example: 1024 × 1024 pixels
• need to compress

Data
Compression
Communication Errors

Storing Integers

•  Images
• GIF — Graphic Interchange Format
◆ allows only 256 colors

• PNG — Portable Network Graphic
•  JPEG — photographs

• Audio and Video
• MPEG — Motion Picture Experts

Group
• MP3/MP4 most common for audio

• For audio/video — use properties
of human hearing and sight

Data
Compression
Communication Errors

Storing Integers

• Reasons of data errors
• Transferring
• Malfunctioning circuit
• Corrupt storage

• How to detect errors?
• Parity bits

•  Odd, Even

Data Compression

Communication
Errors

64 Chapter 1 Data Storage

so that the entire resulting pattern has an odd number of 1s. Once our encod-
ing system has been modified in this way, a pattern with an even number of
1s indicates that an error has occurred and that the pattern being manipulated
is incorrect.

Figure 1.28 demonstrates how parity bits could be added to the ASCII codes
for the letters A and F. Note that the code for A becomes 101000001 (parity bit 1)
and the ASCII for F becomes 001000110 (parity bit 0). Although the original 8-bit
pattern for A has an even number of 1s and the original 8-bit pattern for F has an
odd number of 1s, both the 9-bit patterns have an odd number of 1s. If this tech-
nique were applied to all the 8-bit ASCII patterns, we would obtain a 9-bit encod-
ing system in which an error would be indicated by any 9-bit pattern with an
even number of 1s.

The parity system just described is called odd parity, because we designed
our system so that each correct pattern contains an odd number of 1s. Another
technique is called even parity. In an even parity system, each pattern is
designed to contain an even number of 1s, and thus an error is signaled by the
occurrence of a pattern with an odd number of 1s.

Today it is not unusual to find parity bits being used in a computer’s main
memory. Although we envision these machines as having memory cells of 8-bit
capacity, in reality each has a capacity of 9 bits, 1 bit of which is used as a parity
bit. Each time an 8-bit pattern is given to the memory circuitry for storage, the
circuitry adds a parity bit and stores the resulting 9-bit pattern. When the pattern
is later retrieved, the circuitry checks the parity of the 9-bit pattern. If this does
not indicate an error, then the memory removes the parity bit and confidently
returns the remaining 8-bit pattern. Otherwise, the memory returns the 8 data
bits with a warning that the pattern being returned may not be the same pattern
that was originally entrusted to memory.

The straightforward use of parity bits is simple but it has its limitations. If a
pattern originally has an odd number of 1s and suffers two errors, it will still
have an odd number of 1s, and thus the parity system will not detect the errors.
In fact, straightforward applications of parity bits fail to detect any even number
of errors within a pattern.

One means of minimizing this problem is sometimes applied to long bit
patterns, such as the string of bits recorded in a sector on a magnetic disk. In
this case the pattern is accompanied by a collection of parity bits making up
a checkbyte. Each bit within the checkbyte is a parity bit associated with a
particular collection of bits scattered throughout the pattern. For instance,
one parity bit may be associated with every eighth bit in the pattern starting

Parity bit Parity bit

1 0 1 10 0 0 0 0 0 0 1 00 0 0 1 1

ASCII A containing an even
number of 1s

ASCII F containing an odd
number of 1s

Total pattern has an odd
number of 1s

Total pattern has an odd
number of 1s

Figure 1.28 The ASCII codes for the letters A and F adjusted for odd parity

Storing Integers

How to detect and even correct
errors?

• Checksums (hashing or parity)
• Hamming distance – number of

different bits
• 01010101 and 11010100
• Hamming distance 2

Data Compression

Communication
Errors

Assignment
• Read the rest of chapter 1
• Exercises:
•  1
•  7
•  10
•  12
•  16
•  24
•  26
•  32
•  51

