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Abstract

Abstract

Image inpainting is the process of filling in missing parts of
damaged images based on information gathered from surrounding
areas. In addition to problems of image restoration, inpainting can
also be used in wireless transmission and image compression
applications. In this thesis, we have developed an automatic digital
inpainting system that enables the user to choose between two
complementary approaches. The first is based on the solution of
partial differential equation of isophote intensity to fill-in missing
portions in the region under consideration, while the second is based
on texture inpainting. The filling-in process is automatically done in
regions containing completely different structures, textures, and
surrounding backgrounds.

We have also presented an improved inpainting method based
on the exemplar-based image inpainting technique. The developed
method enhances the inpainting robustness and effectiveness by
including image gradient and second derivative information during
the inpainting process. Finally, we validated our developed method
and compare the results with previous methods. Our results show that
the developed algorithm can reproduce texture and at the same time
keep the structure of the surrounding area of the inpainted region.
The method proved to be effective in removing large objects from an
image, ensuring accurate propagation of linear structures, and
eliminating the drawback of “garbage growing” which is a common

problem in other methods.
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Chapter 1 Introduction

1.1 Introduction

The story of inpainting begins in the art world. For centuries,
people have been keenly interested in repairing missing sections of
oil paintings, and doing so in a way that renders the restoration as
imperceptible as possible (See Figure 1-1). However, differences of
opinion regarding the best way to accomplish the retouching have

been present from art restoration’s inception.

The term inpainting is borrowed from paper art, where restoration
artists are tasked with restoring faded and damaged paintings. In art
however, the major concern is to hide the damage in whichever way
complements the existing pigments and image the best, rather than
repaint the damage parts of the painting since erasing paintings is

generally not an option (that would be called overpainting) [1].

Image retouching ranges from the restoration of paintings to
scratched photographs or films to the removal or replacement of
arbitrary objects in images. Retouching can furthermore be used to
create special effects (e.g., in movies). Ultimately, retouching should
be carried out in such a way that when viewing the end-result it is
impossible for an arbitrary observer, or at least very hard, to

determine that the image has been manipulated or altered.
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Figure 1-1: Example of manual inpainting performed by a

professional artist.

Digital Inpainting is a term introduced in [2]. It alludes to how to
perform inpainting digitally through image processing in some sense.
Thereby also automating the process and reducing the interaction
required by the user.

Ultimately, the only interaction required by the user is the selection
of the region of the image to be inpainted.

Reference [2] describes the basic process of inpainting in four steps
as follows:

1. The global picture determines how to fill in the gap, the
purpose of inpainting being to restore the unity of the work.

2. The structure of the surroundings of the gap is continued into
the gap, contour lines are drawn via the prolongation of those
arriving at the boundary of the gap.

3. The different regions inside the gap, as defined by the contour
lines are filled with color, matching those of the boundary of

the gap.
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4. The small details are painted (e.g., little white spots on an
otherwise uniformly blue sky; in other words “texture” is

added.

Partial differential equations (PDEs) are used for a large variety of
image processing tasks, and recently, they have been proposed for so
called inpainting techniques, which use PDE-based interpolation

methods to fill in missing image data from a given inpainting mask.

Inpainting Vs. Denoising

Image inpainting is different than image denoising. Image
inpainting is an iterative method for repairing damaged pictures or
removing unnecessary elements from pictures. Classical image
denoising algorithms don't apply to image inpainting. In common
image enhancement applications, the pixels contain both information
about real data and the noise, while in image inpainting, there is no
significant information in the region to be inpainted. The information
is mainly in the regions surrounding the areas to be inpainted.
Another difference lies within the size of the data to be processed, the
region of missing data in inpainting is usually large like long cracks

in photographs, superimposed large fonts, and so on [3].

1.2 The Fundamentals of Digital Inpainting

Digital inpainting refers, as already mentioned, to inpainting
through some sort of image processing. The digital inpainting process
can be looked upon as a linear or non-linear transformation as

illustrated in Figure 1-2, [4] and [5], where u,, is the original image

and u is the transformed image (i.e., the digitally inpainted image).
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ug —» | image processor f |—» U

Figure 1-2 Linear transformation through an image processor f.

This is also how the concept of image processing is described in
general [6]. The image processor can be looked upon as a function f
as follows:

fiu, -u
that is

u =1(u,).
Now, let Q denote the set of pixels (the region) of the imageu, to be

inpainted. Let 0Q denote the one pixel wide boundary of Q so that
(see also Figurel-3):

Q C y, , Q= {the set of pixels of u, to be inpainted}
and

0QC u, , 0Q = {the boundary pixels of Q}

N | p——
.'/’--{‘\\\
n <)
| 6 N
S g

Figure 1-3 The imageu , , the region Q to be inpainted and its

boundary 0Q.
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The following steps describe the general solution to the problem (an
explanation is given below):
STEP 1: SPECIFY Q
STEP 2: 02 = THE BOUNDARY OF Q
STEP 3: INITIALIZE Q
STEP 4: FOR ALL PIXELS X, Y € Q
INPAINT X, Y IN Q BASED ON INFORMATION IN 0Q

The explanation is as follows: row 1 lets the user specify the region
to be inpainted, row 2 computes the boundary of the region and row 3
initializes the region by for example, clearing existing color
information. The for-loop “simply” inpaints the region based on

information of its surroundings.

A first glance at the pseudo-code gives the impression that it is a
piece of cake to implement. However, digital inpainting most often
require a well thought-out strategy regarding the inpainting itself (i.e.,
the for-loop in this case). The general concepts of some of the
existing approaches are described in chapter two.

A closely related area is the restoration of films, i.e., image sequences
[7], [8], [9], [10] and [11]. The fundamental problem can be
considered as being the same. However, the approach of digital
inpainting regarding image sequences is significantly different from
the approach of digital inpainting regarding still images. In order to

inpaint () in frame n, where n € N, (i.e., a still image), information
to inpaint () is derived out of adjacent frames, i.e., ()  from

frame n+k, where {k: k € Z, k # 0}.
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This, instead of using information found at the boundary () = of

frame n. Hence, it is easy to realize that spatial and temporal changes
such as the movement of an object must be taken into consideration

when working with image sequences.

Digital inpainting regarding 3D-surfaces resembles digital inpainting
of 2D images. Geometric partial differential equations (PDE’s) are
used to inpaint surface holes. However, instead of only working in
two dimensions, the geometric PDE’s may be used to inpaint surface

holes in n dimensions [12] and [13].

1.3 Thesis Outline

In Chapter one, we gave a general overview about the digital
inpainting problem, its definition, and its applications. The contents

of the other chapters are outlined as follows:

Chapter Two
This chapter contains a survey of related work. The basic ideas and
the concepts of some of the existing digital inpainting approaches are

presented. The underlying theory is briefly explained.

Chapter Three

It contains our developed digital inpainting algorithm that is based on
partial differential equations texture synthesis, which could
successfully restore the texture as well as the structural data in the
image. Also, we explain the details of digital inpainting algorithms
that have been implemented. The motivation behind the choice of

algorithms is also presented.



Chapter 1 Introduction

Chapter Four

It contains the results of our algorithm, and a comparison between
our results and other inpainting algorithms results. Images
representing typical inpainting cases are discussed, and the results are

shown along with the computation times.

Chapter Five
In this chapter we present the thesis conclusions, and plans for future

work.
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The literature contains several inpainting algorithms that have

been developed. They may roughly be divided into two categories:

1.

Usually PDE based algorithms are designed to connect edges
(discontinuities in boundary data) or to extend level lines in
some adequate manner into the inpainting domain, see [14],
[15],[16], [17], [18] and [19]. They are targeted on
extrapolating geometric image features, especially edges. i.e.
they create regions inside the inpainting domain. Most of
them produce disturbing artifacts if the inpainting domain is

surrounded by textured regions.

Texture synthesis algorithms use a sample of the available
image data and aim to fill the inpainting domain such that the
color relationship statistic between neighbored pixels matches
those of the sample, see [20], [21], [22], [23], [24], [25], [26],
[27] and [28]. They aim for creating intra—region details. If
the inpainting domain is surrounded by differently textured

regions, these algorithms can produce disturbing artifacts.

In this chapter, we will briefly explain the main ideas and the

concepts of some of the existing inpainting algorithms.

2.1 PDE-based Inpainting Algorithm

Bertalmio et al. pioneered a digital image inpainting

algorithm based on partial differential equations (PDEs) [2]. A user-

provided mask specifies the portions of the input image to be

retouched and the algorithm treats the input image as three separate

channels (R, G and B). For each channel, it fills in the areas to be

inpainted by propagating information from the outside of the masked

10
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region along level lines (isophotes). Isophote directions are obtained

by computing at each pixel along the inpainting contour a discretized
gradient vector (it gives the direction of largest spatial change) and
by rotating the resulting vector by 90 degrees. This intends to

propagate information while preserving edges.

A 2-D Laplacian is used to locally estimate the variation in color
smoothness and such variation is propagated along the isophote
direction. After every few steps of the inpainting process, the
algorithm runs a few diffusion iterations to smooth the inpainted
region. Anisotropic diffusion is used in order to preserve boundaries

across the inpainted region.

Steady state is achieved if the smoothness of the image (its second
derivative) is constant along the isophotes. The assumption of
constant smoothness along isophotes is in general not justified. Since
edges are continued straightly into the inpainting domain, round
objects tend to develop straight segments meeting at acute angles,
thus producing kinks and neglecting the principle of continuation of

direction.

2.2 Texture-based Inpainting

PDE-based inpainting techniques work at the pixel level, and
have worked well for small gaps, thin structures, and text overlays.
However, for larger missing regions or textured regions, they may

generate blurring artifacts.

The main point of interest in PDE based inpainting is a reasonable
course of edges (discontinuities) which essentially form a one

dimensional subset of the image. PDE inpainting algorithms usually
11
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fail if they are applied to a textured area or in areas containing regular

patterns.

The reasons for failing are primarily the following:

1. Textures usually contain locally high gradients which may be
misinterpreted as edges and thus are falsely continued into the
inpainting domain.

2. The only image information that is used by PDE based
inpainting is the boundary condition contained within a
narrow band around the inpainting domain. Thus it is not at
all possible to recognize regular patterns or structures from

such a small amount of information.

Texture synthesis algorithms operate essentially on one pixel at a
time and determine its value by looking for similar areas in the
available image data. The fragment based algorithms can in some
sense be considered as generalized texture synthesis. Instead of
copying single pixels whole blocks are transferred into the inpainting
domain thereby regarding that the resulting inpainting connects
smoothly and is similar to the available image. Some hybrid
algorithms which combine one or more techniques can also be used

in inpainting domain [29].

In the following we give an overview on texture synthesis algorithms

which have been used particularly for inpainting purposes:

Cant & Langensiepen [30] create copies of the image to be inpainted
at various scales. In the coarsest image several candidates for a best
matching patch are searched. In this search process also mirrored and
rotated versions of the patches are considered. Once a set of
candidate patch positions is found they are transferred to higher
levels where the positions are adjusted to the finer resolution by

searching in a neighborhood around the best positions found so far.

12
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Thus an exhaustive search has only to be performed at the coarsest

level, on the finer levels only a small subset of the image has to be

considered.

Criminisi et.al. [31] and [32] use a confidence and a priority function.
The priority of a pixel depends on the confidence and on the gradient
magnitude of its surrounding. Pixels lying close to convex corners
inside the inpainting domain get high priority since they are
surrounded by many high confidence pixels and thus can be reliably
inpainted. On the other hand pixels lying close to edges (high
gradients) are also assigned high priority such that edges are treated
preferably. Continuation of edges tends to build concave spikes into
the inpainting domain and the priority of the surrounding pixels
decreases. Thus a balanced growing of edges and texture patches is
guaranteed. Patches are taken to be fixed size and constant shape (i.e.,
no rotation or mirroring is considered) and the similarity of patches is

simply calculated using sum of squared differences.

2.3 Variational Image Inpainting

A different approach to inpainting is proposed by Chan and
Shen [33]. It is a variational-based method. An Euler-Lagrange
equation is used and the inpainting of & is performed by using
anisotropic diffusion. It is targeted at handling images that do not
contain intense texture structures (e.g., natural images). The authors
emphasize that any possible solution to the inpainting problem is
only a good approximation or a “best” guess, i.e., it is more or less
impossible to completely restore every detail of Q. The “best” guess
is modeled by the optimization of some energy or cost functional.

The interpolation is limited to creating straight isophotes.

13
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Furthermore, the authors distinguish the inpainting problem into two

levels, the local and global level. The method only relies on local
information for the inpainting of Q. This approach also takes into
account the sampling theorem [34]. The analogy with inpainting is
that in order to get an accurate reconstruction the sampling distance

has to be small enough, i.e., & has to be small. Thus, the method is
developed for small 2. Another reason for focusing on small & is the

fact that it is somewhat difficult and thereby also computationally
expensive to catch global patterns due to its intense variations in both

scale and structure [33].

The principle behind their approach can be summarized as follows:
Variational denoising and segmentation models all have an
underlying notion of what constitutes an image. In the inpainting
region, the models of Chan and Shen reconstruct the missing image

features by relying on these built-in notions.

As an extension of [33], Chan and Shen, describe a Curvature Driven
Diffusion (CDD) approach in [35]. It extends the previously
described method and like its predecessor it is a PDE-based method.
The extension is aimed at handling larger Q. It does this by taking
into account geometric information of the isophotes when defining
the “strength” of the diffusion process [36]. The diffusion gets
stronger where the isophotes are having a larger curvature, while it

dies away as the isophotes stretch out.

The CDD approach may be looked upon as being orthogonal to the
first inpainting method described in section 2.1. While the latter one

propagates smoothness along the isophotes, this approach diffuses
14
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pixel information along the normal direction (i.e., perpendicular to

the isophotes).

This first model introduced by Chan and Shen used the total variation
based image denoising model of Rudin, Osher, and Fatemi [37] for
the inpainting purpose. The model can successfully propagate sharp
edges into the damaged domain. However, because the regularization
term in this model exacts a penalty on the length of edges, this
technique cannot connect contours across very large distances.
Another caveat to the method is that it does not always keep the
direction of isophotes continuous across the boundary of the

inpainting domain.

Subsequently, Kang, Chan, and Shen [38] introduced a new
variational image inpainting model that addressed the shortcomings
of the total variation based one. The model is motivated by the work
of Nitzberg, Mumford, and Shiota [39], and includes a new
regularization term that penalizes not merely the length of edges in an
image, but the integral of the square of curvature along the edge

contours.
This allows both for isophotes to be connected across large distances,

and their directions to be kept continuous across the edge of the

inpainting region.

15
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2.4 Simultaneous Structure and Texture Image

Inpainting

Various algorithms have been proposed to fill missing regions
with available information from their surroundings. In cases of
texture synthesis the information required for texture generation is
from the input image. Since most image areas are not just pure
texture or pure structure, this approach provides just a first attempt in

the direction of simultaneous texture and structure filling-in.

The basic idea of the algorithm of Bertalmio et al. [40] is that first
decomposing the original image into the sum of two images, one

capturing the basic image structure and the other capturing the texture

Geometry (edges)

Image
el gt |

N

. : Textures
AL O
LN Woods 8 Sky

Fur 7 E Grass
Figure 2-1 Decomposition of an image into geometry and texture

(and random noise inside). The first image (structure image) is
inpainted following the work by Bertalmio et al. [1], while the other
one is filled-in with a texture synthesis algorithm following the work

by Efros et al. [41].

16
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The two reconstructed images are then added back together to obtain

the final reconstruction of the original data. In other words, the
general idea was to perform both structure inpainting and texture
synthesis not on the original image, but on a set of images with very
different characteristics that are obtained from decomposing the
given image. The decomposition produced images suited for these
two reconstruction algorithms. The algorithm works well enough for
well designed structures in the image, but in case of natural images
the structures do not have well defined edges so the results might not
be correct. Also for large unknown regions the algorithm might not

give plausible results.

2.5 Inpainting Using Navier-Stokes Equations

In the method described in [3] Bertalmio et al. modified their
method through an analogy of the Navier-Stokes and a slightly
different underlying mathematical model. The Navier-Stokes
equations are non-linear PDE’s. Employing these equations it is
possible to describe fluid dynamics, e.g., ocean currents, water flow,

movement of air in the atmosphere and other phenomena.

The method is directly based on the Navier-Stokes equations for fluid
dynamics, which has the immediate advantage of well-developed
theoretical and numerical results. This is a new approach for
introducing ideas from computational fluid dynamics into problems

in computer vision and image analysis.

This approach [3] uses ideas from classical fluid dynamics to
propagate isophote lines continuously from the exterior into the

region to be inpainted. The main idea is to think of the image

17
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intensity as a stream function for a two-dimensional incompressible

flow. The Laplacian of the image intensity plays the role of the
vorticity of the fluid; it is transported into the region to be inpainted
by a vector field defined by the stream function. The resulting
algorithm is designed to continue isophotes while matching gradient

vectors at the boundary of the inpainting region.

Both the inviscid and viscous problems, with appropriate boundary
conditions, are globally well-posed in two space dimensions.
Solutions exist for any smooth initial condition and they depend
continuously on the initial and boundary data.

In terms of the stream function, the Laplacian of the stream function,
and hence the vorticity, must have the same level curves as the
stream function. The analogy to image inpainting is now clear: the
stream function for inviscid fluids in 2D satisfies the same equation

as the steady state image intensity equation.

The point is that, in order to solve the inpainting problem, we have to
find a steady state stream function for the inviscid fluid equations,
which is a problem possessing a rich and well developed history.

The main analogy that this approach is built on is the parallelism
between the stream function in a 2D incompressible fluid and the role
of image intensity function "I" in the inpainting algorithm. This
allows us to design a new inpainting method that will achieve the

same steady equation.

Let Q be a region in the plane in which we want to inpaint from

surrounding data. Assume that the image intensity [ is a smooth
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function (with possibly large gradients) outside of Q and we know

both J “and A J =~ on the boundary 9 Q.

The authors design a ‘Navier-Stokes’ based method for image
inpainting. In this method the fluid dynamic quantities have the

following parallel to quantities in the inpainting method.

Navier Stokes Image inpainting
Stream function Image intensity I

Fluid velocity V= Vl Y Isophote direction VLI
Vorticity w= Ay Smoothness w= A 1
Fluid viscosity v Anisotropic diffusion v

The goal is to solve a form of the Navier-Stokes equations in the
region to be inpainted. In fluid problems with small viscosity, the
above dynamics can take a long time to converge to steady state,
making the method less practical. Instead there are pseudo-steady
methods that involve replacing the Poisson equation with a dynamic

relaxation equation.

The existence of viscosity in the equations produces diffusion which
can result in a blurring of sharp interfaces, and image gradients in the
inpainting region. Hence it is often desirable to include anisotropic
diffusion either added directly to the dynamical problem or as an

additional step in conjunction with the Poisson step.

This analogy also shows why diffusion is required in the original

inpainting problem. The natural boundary conditions for inpainting
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are to match the image intensity on the boundary of the inpainting

region and also the direction of the isophote lines which for the fluid
problem is effectively a generalized boundary condition that requires
a Navier-Stokes formulation, introducing a diffusion term. In practice
nonlinear diffusion (as in Perona-Malik [36], and Rudin, Osher,
Fatemi [37]) works very well to avoid blurring of edges in the

inpainting.

2.6 Inpainting Using the Vector Valued Ginzburg-

Landau Equation

Another inpainting approach is based on the complex
Ginzburg—Landau equation [42]. The use of this equation is
motivated by some of its remarkable analytical properties. While
common inpainting technology is especially designed for restorations
of two dimensional image data, the Ginzburg—Landau equation can
straight forwardly be applied to restore higher dimensional data,
which has applications in frame interpolation, improving sparsely
sampled volumetric data and to fill in fragmentary surfaces. The
latter application is of importance in architectural heritage

preservation.

The Ginzburg—Landau equation is originally developed by Ginzburg
and Landau [43] to phenomenologically describe phase transitions in
superconductors near their critical temperature. The equation has

proven to be useful in several distinct areas besides superconduction.

Solutions of the real valued Ginzburg—Landau equation develop
homogeneous areas, which are separated by phase transition regions

that are interfaces of minimal area. In image processing
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homogeneous areas correspond to domains of constant grey value

intensities, and phase transitions to edges. Thus the quoted properties
make the real valued Ginzburg—Landau equation a reasonable method

for high quality inpainting of binary images.

The authors calculate a complex valued function ~g, whose real part
is the geometry image g scaled to a range of values between -1 and 1

and the imaginary part is nonnegative.

The solution of the Ginzburg—Landau equation reveals high contrast
in the inpainting domain, which makes it particularly suited for
inpainting purposes. However, the level lines of the solution of the
Ginzburg—Landau equation at the boundary of the inpainting domain
might look kinky. The kinks can be smoothed via coherence

enhancing diffusion.

The Ginzburg-Landau equation has some favorable properties for
image processing applications. For instance it has a tendency to
connect discontinuities by minimal surface interfaces. So given an
image with a missing or unwanted domain € the algorithm
described in [42] finds a solution of the Ginzburg—Landau equation,
where the available parts of the image are prescribed as Dirichlet

boundary condition.

The numerical experiments have shown that best results are obtained
for locally small inpainting areas which make this approach well

suited for removing cracks or superimposed texts.
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The Ginzburg-Landau algorithm does usually not give good results

when the inpainting domain is large or surrounded by strongly
textured regions. This is a drawback commonly shared by all PDE
based inpainting algorithms. Instead they perform well if the
inpainting domain is locally small, e.g., consists of small stains or

thin structures.
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Chapter 3 Enhanced PDE Digital Inpainting Algorithm

Image inpainting is an iterative method for repairing damaged
pictures or removing unnecessary elements from pictures. This
activity consists of filling in the missing areas or modifying the
damaged images in a non-detectable way by an observer not familiar
with the original images. The development of our PDE-based
inpainting method follows the work of Sapiro et al. [2].

The following sections describe the method details and its

implementation

3.1 PDE-based Digital Inpainting Algorithm

The image inpainting technique is based on filling holes in
images by propagating linear structures (called isophotes in the
inpainting literature) into the target region via diffusion (figure 3-1).
This is analogous to the partial differential equations (PDE) of
physical heat flow. Color images are considered as a set of three
images, and for each one, the region is filled by propagating
information from the outside of the masked region along level

contours (isophotes).

Isophote direction is obtained by computing the discretized gradient
vector of each pixel along the contour (the gradient indicates the
direction of largest color change) and by rotating the resulting vector
by 90 degrees.

The isophote direction is defined as
. g 9. ... .
VI @)= )
dj 0i

where I (i, j) is the image data (gray scale value) at a point (i, j) in the

two dimensional picture. Image data from the boundary of the
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inpainting region is then propagated a short distance into the

inpainting region along these isophotes.

(@) (b)
Figure 3-1: The selected region represented by the grey ellipse.

(The numbers represent the grey levels)
(a) Incomplete level lines.

(b) Inpainted level lines with curved connections.

This intends to propagate information while preserving structures. A
2-D Laplacian operator is used to locally estimate the variation in
smoothness. Through propagating such variation, the isophote
direction is obtained.

The PDE to solve is then

o +VIVAI =0
ot

This has the effect of propagating the smoothness operator A/ into
the inpainting region.

After every step of the inpainting process, a few diffusion iterations
are taken to smooth the inpainted region. Anisotropic diffusion is
used in order to preserve edges across the inpainted region [36].
Every few steps in the numerical process, an iteration of anisotropic

diffusion is added by calculating
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(;_i=k(i,j,t)|VI(i,j,f)|

at all points within the inpainting region. Here, k (i, j, t) is the
Euclidean curvature of the two dimensional surface I (i, j, t) at the
point (i, j). This diffusion process allows the successive isophote

lines to curve, if need be, as they are propagated.

3.1.1 Numerical Implementation of the Inpainting

Algorithm

The inpainting algorithm goes as follows,

Input:

* Image to be inpainted,

* Mask that delimits the position to be inpainted.

Pre-processing step:

Whole original image undergoes anisotropic diffusion smoothing.
(To minimize the influence of noise on the estimation of the direction

of the isophotes arriving at 02)

Inpainting loop:

Repeat the following until a steady state is achieved. (Only values
inside ©Q are modified)

Every few iterations, a step of anisotropic diffusion is applied.

J760) =[G +M] L))V )EQ O
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ur
ur ..
[16:0)=[0L Gl oy )| @
ING.jm)
oL (l’]) =(Ln(i +13j)—L n(i _laj)sL”(isj +1) _Ln(isj _1)) (3)
L'GH=1] Gp+l], G.)) “)

NG, j,n) - 1@n.160)

NG _ )
Nl (e nf +(renf
B.j)=oL" (i,j)-‘ﬁ:m ®)

NG,jom)

T+ T + (L) + () where B> 0
‘Vln (i,j)‘ =1 \/(]Z,,M)2 + (]me)z + (]sz)z + ([zfm)zwhere/g)n <0 (1)
Owhere /))n =0

/3 n(Eq.6) is the projection of (Eq.3) onto the normalized normal

vector (Eq.5) (the isophote direction), where (Eq.4) is the smoothness
estimation (the Laplacian). (Eq.7) is a slope-limited version of the
norm of the gradient of the image. The subscript indexes b and f
denote the backward and forward differences, while m and M denote

the minimum and maximum between the derivative and zero.
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[ . I(i+1,j)—1(,j) Forward difference in the x-direction
1,71 (1,j) — 1 (i-1,j) Backward difference in the x-direction
Ji v I(i,j+1)—1(1,j) Forward difference in the y-direction

I o I(i,j)—1(,j-1) Backward difference in the y-direction

A t (Eq.1) may be looked upon as a speed factor (i.e., small A t gives
makes the algorithm converge slower). The algorithm runs in a total
of T iterations. The inpainting itself (Eq.1) runs in a total of A
iterations steps, and B diffusion iterations are performed after the A

inpaintings.

3.1.2 Anisotropic Diffusion Algorithm

The implementation of discrete anisotropic diffusion is based on
the formulas shown in Perona and Malik's literature, Scale-Space and

Edge Detection Using Anisotropic Diffusion [36].

[ =T CD+2[C V1GD+C V(D) +C VA 6:0)+C, V1G]

The subscripts N, S, E, and W are corresponding to direction north,

south, east and west respectively. Where
V.l GH=]G-17)-]"G))
VI 6D =[G+, -]"G))
V. I['G@)=]Gj+)-]"G.))
V[ G)=]Gj-D-]G))
Cy @) =gV, ['GHD
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Cg' 6.7 =e(V, ["G.)D

C. @hH=e(V, ['GHD
Cy G.)) =2V, ['G))

(-|vI|/ K)?

g(yyH=¢€
The value of A is fixed at 0.25 and K is selected between 0.3 and 0.5.

Although this algorithm succeeds to inpaint small regions (figure 3-2)
in non detectable way, it can not reproduce texture as well. When we
run this algorithm to inpaint relatively large regions, it introduces

blurring in the image (figure 3-3).

Figure 3-2: The bungee cord and the knot tying the man’s feet

have been removed.
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Figure 3-3: Limitations of the algorithm: texture is not

reproduced.

Both image inpainting and texture synthesis have their strengths and
weaknesses. Image inpainting extends linear structure into the gap by
utilizing the isophote information of the boundary pixels. The linear
structures will be naturally extended into the gap. However, since the
extension actually using the diffusion techniques, artifacts such as
blur could be introduced. On the other hand, texture synthesis copies
the pixels from existing parts of the image, thus avoids the blur. The
shortcoming of texture synthesis is that it focuses on the whole image
space, without giving higher priority to the linear structures around
the boundary of the gap. As a result, the linear structures will not be
naturally extended into the gap. The result would likely have
distorted lines, and noticeable differences between the gap and its

surrounding area would be expected (figure 3-4).

One interesting observation is that even though image inpainting and

texture synthesis seem to differ radically, yet they might actually
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complement each other. If we could combine the advantages of both

approaches, we would get a clear gap filling that is the natural
extension from the surrounding area. We modified the texture
synthesis approach used by Criminisi et al.[31] to accomplish this

task.

In Criminisi et al algorithm, the gap will be filled with non-blur
textures, while at the same time preserve and extend the linear
structure of the surrounding area. The algorithm uses a best-first
algorithm in which the confidence in the synthesized pixel values is
propagated in a manner similar to the propagation of information in

PDE inpainting algorithm.

Criminisi et al. use the sampling concept from Efros’ approach [41].
The improvement over Efros’ is that the new approach takes isophote
into consideration, and gave higher priority to those “interesting
points” on the boundary of the gap. Those interesting points are parts
of linear structures, and thus should be extended into the gap in order
to obtain a naturally look. To identify those interesting points,
Criminisi gives a priority value to all the pixels on the boundary of
the gap. The “interesting points” will get higher priorities according
to the algorithm, and thus the linear structures would be extended

first.

This algorithm, however, has some problems: firstly, it merely adopts
a simple priority computing strategy without considering the
accumulative matching errors; secondly, the matching algorithm for
texture synthesis only uses the color information; thirdly, the filling

scheme just depends on the priority disregarding the similarity. As a
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result of lacking robustness, their algorithm sometimes runs into

difficulties and “grows garbage”.

Figure 3-4: The linear structure is not well preserved

To solve these problems, we propose an enhanced exemplar-based

inpainting algorithm.

3.2 Enhanced Exemplar-based Inpainting
Algorithm

The exemplar-based inpainting algorithm consists mainly of three
iterative steps, until all pixels in the inpainted region are filled. The
region to be filled, i.e., the target region is indicated by Q, and its
contour is denoted 0Q. The contour evolves inward as the algorithm
progresses, and so we also refer to it as the “fill front.” The source
region which remains fixed throughout the algorithm, provides
samples used in the filling process (figure 3-5). In order to find the

most similar patch in the source region to the target patch, we search
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the whole source image to find the best fit. The similarity is measured

by computing the sum of squared distance in color between each

corresponding pixel in the two patches.

Figure 3-5: Notation diagram. Given the patchW , n  is the

normal to the contour 0Q of the target region Q and V[ : is the

isophote (direction and intensity) at point p. The entire image is

denoted with 1.

3.3 Modifying the Distance Function

The similarity measure based only on color is insufficient to
propagate accurate linear structures into the target region, and leads
to garbage growing. So, we add to this distance function a new term

G representing image gradient as an additional similarity metric.
G=GW,) -GV,

Where G is the gradient value for each pixel in the two considering
patches.  Hence, the similarity function now depends on the
difference between the patches according to two criteria, the

difference in color and in gradient values.
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The gradient of an image measures how it is changing. It provides
two pieces of information. The magnitude of the gradient tells us how
quickly the image is changing, while the direction of the gradient tells

us the direction in which the image is changing most rapidly.

The details of the algorithm implementation is as follows,

1. Computing patch priorities

Given a patch W centered at the point p for some p €9, its priority

P (p) is defined as the product of two terms:

P()=C(p) D (p)

C (p) is the confidence term and D (p) is the data term, and they are

defined as follows:

2w ra C@

‘ p

VIiin
C(p) = Vi)

, and D(p)=

Where “Pp‘ is the area of W ,a is a normalization factor
(e.g.,a =255 for a typical grey-level image), and », is a unit vector

orthogonal to the front 6Q in the point p. The priority is computed for
every border patch, with distinct patches for each pixel on the
boundary of the target region. The patch with the highest priority is
the target to fill.
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2. Propagating structure and texture information

Search the source region to find the patch which is most similar

oW .. Formally, W =argmin, od(¥ %)

The distance d(W¥,,W,) between two generic patches W and W, is

simply defined as the sum of squared differences (SSD) of the
already filled pixels in the two patches.

A
d= E (L _Ibi)2 +(Gy, _Gbi)2

1=1
Where, G presents the image gradient vector, I is the RGB colour
vector, D is the distance (the larger d is, the less similar they are), and

A is the known pixels number in 1IJPA .
Having found the source exemplar IIJqA, the value of each pixel to be

filled, is copied from its corresponding position.

3. Updating confidence values

The confidence C (p) is updated in the area delimited by qu“ as
follows:
c(@=c(p") VqEW , NQ

As filling proceeds, confidence values decay, indicating that we are
less sure of the color values of pixels near the centre of the target

region.
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3.4 Modifying the Data Term

As observed in the previous section, the results still need

more enhancements. The problem in previous algorithms is the way
of computing the patch priorities. In exemplar-based approaches,
filling order is critical because the quality of inpainting result is

highly influenced by the order of the filling process.

In Figure 3-6, the ideal order of filling is shown. In traditional
method, filling order is evaluated by the priority, which only
considering the confidence value of a pixel. The information which
the confidence value of a pixel could give us is not enough, since we
can't know the patch's "real, visual" clues such as isophotes or how

regular the patch's color distribution is.

&
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-
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Figure 3-6: The comparison between concentric layer filling and
desired filling order behavior [32]. (a) The original image. (b, c,
d ,e) The completion steps in concentric filling order. (b', c', d', e')
The completion steps in desired filling order. In (b, c, d, e), as lack

of attention on the line structures, the result may not be desirable.
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The patch priority is defined mainly by the confidence term, where
the confidence term is computed by the number of original pixels in
the source patch. However, that leads to the “onion peel” method,
where the target region is synthesized from the outside inward, in
concentric layers. That gives in the end unsatisfying results that

totally lose the linear structure of the image.

To solve this filling order problem, Criminisi et al. suggests a new
term to determine the priority of the patch, in combination with the

confidence term which is the data term. The data term according to

them is the isophote direction VJ = multiplied by a unit vector
p » p M

orthogonal to the fill front ¢Q at the point p. This new definition of
the priority patch enhances the results because it forces the algorithm
to take into consideration the isophote direction while propagating
the information from the source region into the target region.

We have tested this algorithm, and it gives satisfying results in the
texture-based images that have simple linear structures. But if the
images to be inpainted are more complicated, containing
sophisticated structures of similar textures, the algorithm fails.

After extensive testing, there have been a few cases where the
exemplar-based algorithm in some subjective sense fails. Two of
these cases are shown in Figure 3-7. It is clear that the algorithm
sometimes make bad choices of choosing the substitute patch. As
Figure 3-7(c) shows, the algorithm has chosen patches from the
mountain. This depends on the assigned priority values (and thus the
filling order). For example, the pixels in the region near the mountain
have been given a higher priority and have been filled first. This has

continued throughout the iterations and therefore the best-matching
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mountain patches have progressively expanded patches from the

mountain up in the air. Figure 3-7 (e) experiences the same dilemma.

Figure 3-7 Two examples of algorithm failure [32]

(a-c) The original, The mask and the result
(d-f) The original, The mask and the result

We address this problem in this section, trying to develop an

algorithm that can deal with such difficult cases.

3.4.1 SDGD Overview

By reviewing the literature, we find that the second derivative
in the gradient direction (SDGD) has properties that can be very
useful in our inpainting problem. The SDGD (also called the second
directional derivative), a nonlinear operator, can be expressed in first
and second derivatives. Haralick [44] approximated the SDGD using
derivatives of a cubic polynomial model approximation of the
underlying grey level surface. The cubic fit is equivalent to different

low-pass filters for different derivatives, so that Haralick’s result
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cannot be interpreted as the SDGD of some linear shift-invariant low-

pass filtered image. Clark [45] and Torre [46] used the SDGD in its

analytical description. Very fast approximations of the SDGD can be
obtained using local maximum and minimum filters (grey-scale
dilation and grey-scale erosion) ([47]; [48]; [49]; [50]). A quantitative
evaluation between an analytical SDGD, a non analytical SDGD and
the Marr-Hildreth operator [50] shows comparable performance on

synthetic test images heavily disturbed by Gaussian noise.

SDGD filter - A filter that is especially useful in edge finding and
object measurement is the Second-Derivative-in-the-Gradient-

Direction (SDGD) filter. This filter uses five partial derivatives:

2 2
o a 12 [xy = a 1 Ix = i
ox ox dy ox
9’1 0’1 / ol
yx w2 y =

B ox dy - ay

Note that /= I which accounts for the five derivatives.

This SDGD combines the different partial derivatives as follows:

2 2
spGp ~ Leli 2 L+,
I}+17

Where / =B* G

nn = X, y, XX, yy or xy
and * represents convolution in the spatial domain. Here B is the
image array whose Fourier transform has been band-limited by

multiplying it by a low-pass Gaussian filter.
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G,and G are the first derivatives, with respect to x and y

respectively, of a Gaussian

L exp-2)
N2mo 20°

of width ¢ with pixel radial location r, given by 7* = x > + y > where x

G =

and y are the pixel coordinates relative to the centre of the array. G__,

G, and G, are the second derivatives.

As one might expect, the large number of derivatives involved in this
filter implies that noise suppression is important and that Gaussian
derivative filters, both first and second order are highly recommended
if not required. The standard deviation sigma is the only parameter
of the Gaussian filter; it is proportional to the size of neighborhood
on which the filter operates. Pixels more distant from the center of
the operator have smaller influence, and pixels further from the

center have negligible influence.

From figure 3-8, we can see the effect of the SDGD of Gaussian after
applying it to the image. It demonstrates how the SDGD can detect

the curved edges precisely.

Figure 3-8 (a) Image of the pyramid. (b) Image after SDGD filter.
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3.4.2 The Developed Algorithm

The second derivative in gradient direction (SDGD) produces

a predictable bias in edge location towards the centers of curvature,

so it can be used to determine the fill order.

The details of the algorithm implementation is as follows,

1. Computing patch priorities

Given a patch W centered at the point p for some p €9Q, its priority

P (p) is defined as the product of two terms:

P(p)=C(p) D (p)

C (p) is the confidence term, it means how many information we can

trust in the pixel p's neighborhood. It can be written as

Where “Pp‘ is the area of W,
And D (p) is the data term, it is defined as follows:

I I2+21 I.1 +1 17

D X xy“xTy w'y
(») Ixz"']yz 9)

Where

0°1 / 0°1 ol

g’ Y axay O ox
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2 2
ol
L =a]2 p 2oL
" axdy gy dy
Inn=B*Gnn’

nn = X, y, XX, yy or xy
and * represents convolution in the spatial domain, B is the image,
G,and G are the first derivatives, with respect to x and y
respectively, of a Gaussian

1 r’
exp(--—)
N2mo 20°

of width ¢ with pixel radial location r, given by 7* = x > + y > where x

G =

and y are the pixel coordinates relative to the centre of the array. G

xx

G by and ny are the second derivatives.

During initialization, the function C(p) is set to C(p) = 0 for all point
p in the unknown area Q, and C(p) = 1 for all point p in the known
area / - Q. The confidence term C (p) may be considered as a measure
of the amount of reliable information surrounding the pixel p. The
intention here is to fill first those patches which have more of their
pixels already filled, with additional preference given to pixels that

were filled early on (or that were never part of the target region).

At a coarse level, the term C (p) of Eq.8 approximately enforces the
desirable concentric fill order. As filling proceeds, pixels in the outer
layers of the target region will tend to be characterized by larger
confidence values, and therefore be filled earlier; pixels in the center

of the target region will have lesser confidence values.
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The data term D (p) of Eq.9 is a function of the curvature of

isophotes hitting the front 0Q at each iteration. This term enforces the
priority of a patch to get a higher value when an isophote happens to
"flow" into. This term has crucial importance in our algorithm
because it pays large attention on linear structures to encourage linear
structures to be synthesized first, and, therefore propagated securely
into the target region. Broken curves tend to connect thus fitting in

with the instincts of human beings.
The priority is computed for every border patch, with distinct patches
for each pixel on the boundary of the target region. The patch with

the highest priority is the target to fill.

2. Propagating structure and texture information

Once all priorities on the fill front have been computed, the patch

qu“ with highest priority is found. We then fill it with data extracted

from the source region Q. we propagate image texture by direct

sampling of the source region.

Search the source region to find the patch which is most similar

to 1IJP .. Formally,
‘IJqA =arg minlIJqEQ d(‘IJpA ,lIJq)

The distance d(W¥,,W,) between two generic patches W and W, is

simply defined as the sum of squared differences (SSD) of the
already filled pixels in the two patches.
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Where, I is the RGB color vector (the larger d is, the less similar they

are), and A is the known pixels number in 1IJPA .
Having found the source exemplar IIJqA, the value of each pixel to be

filled, is copied from its corresponding position.

This suffices to achieve the propagation of both structure and texture
information from the source ¢ to the target region 2, one patch at a
time. In fact, we note that any further manipulation of the pixel
values (e.g., adding noise, smoothing, etc.) that does not explicitly
depend upon statistics of the source region, is more likely to degrade
visual similarity between the filled region and the source region, than

to improve it.

3. Updating confidence values

After the patch 1IJPA has been filled with new pixel values, the

confidence C (p) is updated in the area delimited by 1IJPA as follows:
c(@=c(p") VqEW , NQ

This simple update rule allows us to measure the relative confidence

of patches on the fill front, without image specific parameters.
As filling proceeds, confidence values decay, indicating that we are

less sure of the color values of pixels near the centre of the target

region.
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3.5 User Interaction

As one of our goals is the automation of the inpainting
process, we pay attention to the only phase that the user should be
involved with our program, mainly the selection of the region to be
inpainted.. This interaction can not be avoided because it is almost
impossible for any algorithm to predict which object in the image that
the user wants to remove, or in other words, which part of the image

he wants to inpaint.

One important part of digital inpainting is the selection of the region
to be inpainted Q. Selection in digital image editing refers to the task
of extracting (in some sense) an arbitrary object embedded in an
image [35]. It is clear that this is a user interface related problem, and

thus, mainly a matter for the human computer-interaction.

The techniques introduced in this thesis do not require the user to
specify where the novel information comes from. This is done
automatically (and in a fast way), thereby allowing for
simultaneously fill-in of multiple regions containing completely
different structures and surrounding backgrounds. In addition, no

limitations are imposed on the topology of the region to be inpainted.

The only user interaction required by the algorithm is to mask the
regions to be inpainted. Since our inpainting algorithm is designed
for both restoration of damaged photographs and for removal of
undesired objects on the image, the regions to be inpainted must be

masked by the user.
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It has to be mentioned that creating a suitable mask is essential for

obtaining good results, a mask with fairly irregular contours and

kinky edges can have an adverse effect on the inpainting process.

In our program, the user can choose between two options to select the
target region. In the first option, the program will take in two input
images: the original image and another image that would mask out
the object. The user can make the mask using any existing software
containing object selection features such as Adobe Photoshop and

Paint Shop Pro.

After reading in the mask, we marked the target region that will be
filled. We consider the mask as a binary image, where the pixels
belong to the target region are set of ones, and the pixels belong to

the source region are set of zeros.

This can be expressed mathematically as follows:
1(i,j)=0 Vi@i,j)el -Q
1G,j)=1 VI(i,j)EQ

For example, in figure 3-9, if the user wants to inpaint the thin cracks
in the image, he could probably mark these regions with a paint brush
tool that exists in many image editing programs. Our program
generates a binary mask as shown in figure 3-9 (c), after the user

defines which color he used to mark the to-be inpainted region.
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(©
Figure 3-9 (a) Image for three children. (b) Selection of target

region using brush tool. (c) Mask generated using our program.

In the second option, the user displays the original image on screen,
and using the mouse, he specifies a polygonal region of interest
within the image. Selecting an object via freehand drawing is
straightforward. The polygon should be a closed one and it is drawn
by clicking a set of points on the image that represent the vertices of

the polygon. The enclosed area represents the selection.

Use of normal button clicks adds vertices to the polygon. Pressing

Backspace or Delete removes the previously selected vertex. A shift-
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click, right-click, or double-click adds a final vertex to the selection

and then starts the fill; pressing Return finishes the selection without

adding a vertex.

After the selection of the polygon is finished, the inpainting program
is executed to fill the region marked by the polygon. The resulted
image is displayed, and the user has the ability to repeat the whole
process again and again, by selecting another region to inpaint in the

image and so on until he gets the result he desires.

For example, in figure 3-10, if the user wants to remove the Sphinx
from the image, he can use the mouse to point around the object by
clicking on its vertices. The selected area is the target region, and the
rest of the image is the source region.

Then the inpainting program encodes the mask by assigning the pixel
values inside the polygon to ones, and the pixels outside the polygon

are assigned to zeros.
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Figure 3-10 (a) The original Image, (b) The mask.
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This chapter presents the results of the implemented and
developed inpainting algorithms. The algorithms have been tested for
a variety of different cases. The results include cases where the
algorithms perform well and others where the algorithms fail. The
original image, the used mask and the corresponding result are shown
for each case. Also, other data such as the computation time, the
mask size, i.e., the total number of pixels and the total occluded
percentage of the image are presented. The developed inpainting
systems are implemented using a C++ code running on a Pentium IV

class PC (512 Mb RAM, 2 GHz).

4.1 Restoration Results
In this section we present the results of inpainting images of
varying degree of difficulty. The test images include natural scenes

and full color photographs of complex textures.

In the case shown in figure 4-1, we add an artificial thin crack using
Photoshop to the image of the famous golden mask of King TUT,
The crack is then removed by using the PDE-based digital inpainting
algorithm. The image size is 645 by 925, the number of recovered
pixels is 4240, and it takes 58 seconds to get this result. Further
inpainting iterations would not enhance the image anymore, meaning
the PDE algorithm achieves a stable solution. Every ten iterations of
inpainting scheme, the target region goes into 3 iterations of
anisotropic diffusion, where the time step equals 0.1. We can realize
here that the broken lines are entirely removed, but if the cracks are

thicker a blurring effect could be introduced to the image.
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Chapter 4
Since the image presented in figure 4-1 is colored one, it is
treated as a set of three images corresponding to the R,G,B color

channels, and the PDE algorithm is applied sequentially to each one.

I

alll

Figure 4-1 (a) The original image, (b) The mask, (c) The result.
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Figure 4-2 shows the famous bust Statue of Queen Nefertiti before
and after inpainting the damaged parts in her crown. This result is
achieved by applying the Exemplar-based inpainting algorithm. The
image size is 376 by 525; the number of recovered pixels is 3024, and
it takes 114 seconds to achieve this result. The patch size used is 9x9

pixels.

(@ (b)

(©
Figure 4-2 (a) The original image, (b) The mask, (c) The result.
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Figure 4-3 displays a vandalized and restored ancient Egyptian
picture from the tomb of Nefertari in Upper Egypt. Shown also is the
mask used in the inpainting process. The restored image is obtained
by using the exemplar-based inpainting algorithm. The image size is
427 by 463 pixels; the number of recovered pixels is 10559, and it
takes 292 seconds to get this result. The patch size used is again 9x9

pixels.

(©)
Figure 4-3 (a) The original image, (b) The mask, (c) The result.
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In such cases, where the damaged image contains a fair amount of
texture, it is more suitable to use the exemplar-based inpainting
algorithm, because the PDE-based inpainting algorithm is not suited
for texture reproduction.

Figure 4-4 shows a damaged page of an old Koran manuscript and its
restoration. We also use the exemplar-based inpainting algorithm in
this case. The image size is 196 by 362; the number of recovered
pixels is 6495, and it takes 256 seconds to achieved this result.

From these results, we can easily observe that the speed of the
algorithm does not depend only on the size of the to-be inpainted
region, but also depends on a very important factor which is the size
of the whole image. This is because the exemplar-based algorithm
performs an exhaustive search in the whole image in order to find the

most similar patch in the source region to the target patch.

® | b)
Figure 4-4 (a) The original image, (b) The mask, (c) The result.
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To test the effectiveness of the SDGD algorithm in cases images of
pure geometric structure, we implement it for the image of a uniform
circle having gaps in its perimeter. The image and the mask defining
the region to be inpainted is shown in figure 4-5 (a) and (b). The
result shown in figure 4-5 (¢) is obtained by Sapiro algorithm [2], and
show excessive diffusion in the inpainted areas of the image. In
contrast, the results shown in figure 4-5 (d) obtained by using our
SDGD-based algorithm show a clean and uniform circle perimeter
without any excessive diffusion.

The image size for this case is 80 by 80; the number of recovered

pixels is 829, and it takes about 3 seconds by our algorithm to obtain

@ S
O

O

(© (d)
Figure 4-5 (a) Synthetic image, (b) The mask, (c) Result using [2],

(d) Result using SDGD algorithm.

this result.
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Figure 4-6 (a) The original image, (b) The mask, (c) The result.

The case shown in Figure 4-6 is example of removing superimposed
Arabic text from an image depicting the historic Qaitbay Citadel in
Alexandria. Although this image is full of texture, we use the PDE-
based inpainting algorithm. This is because the font size of the super
imposed text is relatively small. The text here is treated as thin cracks.
The image size is 824 by 599; the number of recovered pixels is

45556, and it takes 88 seconds to recover the original image.
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The evolution of the inpainting results is displayed in figures 4-6 (c)
after 100 iterations. Further inpainting iterations would not enhance
the image anymore, meaning that the PDE algorithm achieves a
converged solution. Three iterations of anisotropic diffusion are

implemented after every ten iterations of the inpainting algorithm.

Two factors affect the speed of the PDE-based algorithm, namely, the
size of the region to-be inpainted, and the time step size. Using
numerical experimentation, a value of 0.1 is found satisfactory to get

the right balance of speed and accuracy.

Since 1699, when French explorers
landed at the great bend of the
Mississippi River and celebrated

the first Mardi Gras in North America,
New Orleans has brewed a fascinating

melange of cultures. It was French,
g ; then Spanish, then French again, then
Fough all sold to the United States. Through all
AL% these years, and even into the 1900s,
others arrived from everywhere:
Acadians (Cajuns), Africans, indige~

Ee |8 ‘;‘.J‘
N »ih as

(@) (b)

Figure 4-7 (a) The original image, (b) A mask, (c) The result.
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More results of removing superimposed text is shown in figure 4-7,
which displays the solution for a standard case in the inpainting

literature, depicting a scene in the American city of New Orleans.

It should be noted here, that exact masking of superimposed text may
be difficult to achieve, especially for small fonts. Moreover,
enlarging the masked region may produce inaccurate results, and
increase computational cost. However, our developed SDGD
inpainting algorithm is robust enough to handle irregularly masked
text. Figure 4-8 shows the results obtained using two different masks
that approximately trace the borders of superimposed text. The results
indicate that the SDGD inpainting algorithm has successively
removed the superimposed text produced identical correct results

irrespective of the shape of the masked text letters.
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Figure 4-8 The original image, and two different masks.
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(d) (e
Figure 4-8 The results using the mask (b), and (¢)

Another case of removing unwanted text is shown in figure 4-9.

In this case the mask doesn’t trace the borders of the text letters at all,
rather, a whole region masks the area around the letters. Still, the
SDGD inpainting algorithm removed the text, while preserving the

texture present in the image.
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(2) (b)

(©
Figure 4-9 (a) The image, (b) A developed mask, (c) The result.

More results of test cases in the inapinting literature are displayed in
Figure 4-10 and 4-11 showing the restoration of vandalized and

damaged old photos.
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Figure 4-11 (a) The image, (b) A mask, (c) The result.
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4.2 Object Removal Results

In this section we present the results of object removal from images.
Such applications are usually characterized by texture dominated
images and removal of large areas in the image.

In figure 4-12, we compare the algorithms of reference [2], [31], and
our algorithm presented in this thesis. The result of the algorithm
used in reference [2] shows a marked image blurring and a loss of
details as shown in figure 4-12(c). While that of reference [31] shown
in figure 4-12(e) exhibits a break in the linear structure of (the white
building) in the image. Better image texture and structure are evident
in the result of our algorithm that includes either gradient or SDGD
information the in the present algorithm as shown in figure 4-12(e)
and (f). The image size for this case is 206 by 308, and the number

of recovered pixels is 7996.

(a) (b)
Figure 4-12 (a) The original image, and (b) The mask
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() (@)

(e ®
Figure 4-12 (c) Result of [2], (d) Result of [31], (e) Result of

Gradient algorithm, (f) Result of SDGD algorithm.
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This comparison indicates as expected that the PDE-based digital
inpainting algorithm has some disadvantages, which can be
summarized as follows:

* Resulting image is blurred.

* Large textured regions are not well

reproduced.

Also the texture Exemplar-based inpainting algorithm fails in some
cases, and that is because:
* The algorithm can not accurately propagate
image structures.
* The matching criterion for texture
synthesis that only uses only the color
information produced artifacts in the image
(garbage growing)
The algorithms developed in this thesis eliminate most of these
drawbacks and produced better results. Our main contribution is the
use of using the gradient SDGD information to calculate the distance
function and patch priorities during the propagation of structure and

texture information.

Another comparison is presented in Figure 4-13 which displays an
image for a sail boat in the Nile, the mask used to remove the sail
boat from the image, and the inpainted image. Figure 4.13 (c) shows
the inpainted image using Criminisi algorithm [32]. The result of our
inpainting algorithm is shown in figure 4.13 (d). These results
demonstrate the effectiveness of our method in eliminating garbage

growing that could not be avoided by the method of [32]. The size of
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this image is 200 by 267, and the number of recovered pixels is 7537,

and the run time is 73 seconds.

(@) (b)

(d)
Figure 4-13 (a) The original image, (b) The developed mask, (¢)

The result using algorithm of [32], (d) The result using method

presented in section 3.1.
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More results are presented in Figures 4-14 and 4-15. Figure 4-14
displays an archival picture during the removal of the Abu Sembel
Temple to a new location during the construction of the High Dam in
Aswan in southern Egypt. The steel cables and the workers appearing

in the left image have been removed as shown.

@ (b)

Figure 4-14 (a) The original image, (b) The developed mask, (c)
The result
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Figure 4-15 shows the effectiveness of our modified distant function
inpainting algorithm in removing large regions in a natural scene

image, and still preserves the integrity of the image. The size of this

image is 240 by 160, and the number of recovered pixels is 11196.

(@) (b)

Y b TN ol

(c)
Figure 4-15 (a) The original image, (b) The mask, (¢) The result.
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In some cases, removing an object from the image is a difficult task.
This occurs when the texture of the object to be removed differes
slightly from the rest of the image texture. Figure 4-16 (a) shows a
view for the sphinx with the pyramid in the background, and
algorithm is implemented to remove the sphinx from the image.
Figure 4-16 (b) depicts the mask used to remove the sphinx from the
image. The inpainting process for this image is quite difficult, since
the textures present in the image are very close to each other (the
pyramid and the sphinx), the result using the exemplar algorithm [32]
is shown in figure 4-16 (c), and finally the result using our enhanced

distance function inpainting method is shown in figure 4-16 (d).

(@ (b)

(d
Figure 4-16 (a) The original image, (b) A developed mask, (c) The

result using [32], (d) The result using present algorithm.
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A similar case is presented in figure 4-17, where a large region (the
sphinx) is required to be removed and to recover the occluded part of
the pyramid. The difficulty in this case is due to the similarity
between the texture of the pyramid, the sphinx, the sand, and the
rocks. Additionally, the pyramid has a linear structure and the
occluding object (the sphinx) has a curved structure. The result of
reference [32] algorithm is displayed in figure 4-17 (c) and exhibits

spurious artifacts in the inpainted image. A satisfactory result is

achieved using our algorithm as shown in figure 4-17 (d).

(©) (@)

Figure 4-17 (a) The original image, (b) A developed mask, (c) The
result using [31], (d) The result using SDGD algorithm.

Figure 4-18 displays an image for a man sitting on a curved rock.
This test case is reported in [6], and the author shows how the
exemplar-based inpainting algorithm developed by Criminisi [31]

fails to decide on the right patch to use during the inpainting process,
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and produces artifacts as shown in figure 4-18 (c). Better result is

achieved using our developed algorithms as shown in figure 4-18 (d).

(@ (b)

(© (d)
Figure 4-18 (a) The original image, (b) A mask, (c¢) The result
using [31], (d) The result using SDGD algorithm.
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4.3 Inpainting Algorithms Parameters

Results and Comparisons

In this section, we discuss the factors affecting the speed of the
inpainting algorithms. The two main parameters are the size of the
region to be inpainted and the patch size. This discussion will help us
to evaluate our proposed inpainting algorithm and to compare it with

the developed inpainting algorithms presented earlier in chapter 3.

4.3.1 Mask Size

The first factor we experiment with is the size of the inpainted
region. As a test case for the PDE-based inpainting algorithm, we
chose the Quaitbay citadel image (figure 4-6). We executed the

algorithm using the different mask sizes shown in figure 4-19.
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Figure 4-19 (a)-(f) Different masks for the Quaitbay Citadel

image.

71



Chapter 4 Results and Comparisons

As expected, we find that the larger the size of the mask, the more
time needed by the algorithm to achieve satisfying results. The
relationship between the number of recovered pixels and the time
taken by the PDE-based inpainting algorithm is shown in figure 4-20.
From this graph we conclude that the relationship between the mask

size and the speed of the algorithm is linear.

Figure 4-20 PDE algorithm evaluation graph.

The same procedure is implemented for the texture-based inpainting
algorithm; we used the different masks shown in figure 4-21. We
implemented the algorithm for the image of Nefertari’s Tomb (figure
6-3), and the result also exhibits a linear relationship as shown in

figure 4-22
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() (d)

Figure 4-21. Different masks of Nefertari’ Tomb image.

Figure 4-22 Texture-based algorithm evaluation graph
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4.3.2 Patch Size

The second important factor that affects the performance of
any texture based inpainting algorithm is the patch size. However, it
is difficult to set a universal patch size that can be applied to all
images. Using large patch size, the filling rate is high, which leads to
faster execution time of the inpainting algorithm. However, there are

more important implications on choosing the right patch size.

As stated in reference [31], the patch should be slightly larger than
the largest distinguishable texture element. If the patch size is too
small, it will have little or no texture characteristics which result in
the production of a mass of small fragments. On the other hand, if it
is too large, the patch loses the local texture details, which will lead
to a mismatch. The proper size of the patch as given in [31] is 9x9
pixels. Experimenting with the patch size however, indicate that the
proper patch size can vary from one image to another. The results
shown in figure 4-23 show the effect of changing the patch size on
the quality of the inpainted image. Our experimentation indicates that
in general, a patch size between 7x7 and 11x11 pixels should be

appropriate for most images.
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Figure 4-23 (a) Sail boat image, (b) The mask, (c¢) Patch size=5xS5,
(d) Patch size=7x7, (e) Patch size=9x9, and (f) Patch size=11x11.
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5.1 Conclusions

In this thesis we have developed an improved inpainting
method combining PDE-based and texture-based algorithms. The
choice of using Texture or PDE algorithms depends on the nature of
the image to be inpainted. The PDE algorithm is used for structure
dominated images to fill-in narrow or crack type regions, while the
texture algorithm is more suited for textured images. The time
required for the inpainting process depends on the size of the image
and the regions to be inpainted, and it ranges form few seconds to

several minutes for large images.

Our main contribution in the enhanced inpainting method includes:

1. Modifying the patch filling order scheme by setting the data
term to include second derivative information in the gradient
direction (SDGD).

2. Modifying the distance metric function to include the image
gradient information in addition to intensity values.

Several test images have been used and the results demonstrate that
our developed algorithm can reproduce texture and at the same time
keep the structure of the surrounding area of the inpainted region.

Our method proved to be effective in removing large objects from an
image, ensuring accurate propagation of linear structures, and
eliminating the drawbacks of “garbage growing” and image blurring
which are common problems in other methods. The results obtained

are preferable to those obtained by other similar methods.

The results presented in the thesis demonstrate the effectiveness of

the inpainting method for several test cases involving the restoration
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of old and damaged pictures or manuscripts, and the removal of

superimposed text and large objects.

We hope that the findings of this thesis may help to conserve and
enhance old manuscripts and other cultural treasures which otherwise

would be lost to decay.

5.2 Future Work

Future work is planned in two areas:

3D Extension
We aim to extend the presented methodology to three
dimensions for applications involving damaged monuments and

historical artifacts.

Decreasing user intervention

The inpainting system should be able to automatically switch
between PDE-based algorithm and Texture-based algorithm
according to the nature of the image. As already pointed out in [40]
each separate step of the inpainting algorithm could be performed
with several different sub-algorithms. Since it is unlikely that one
combination performs optimally, it would be desirable to have a
criterion for automatically choosing the appropriate algorithms. This
criterion would have to include the form of the inpainting domain,

image contents, and amount of texture.
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