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Abstract 
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Abstract 
 

Image inpainting is the process of filling in missing parts of 

damaged images based on information gathered from surrounding 

areas. In addition to problems of image restoration, inpainting can 

also be used in wireless transmission and image compression 

applications. In this thesis, we have developed an automatic digital 

inpainting system that enables the user to choose between two 

complementary approaches. The first is based on the solution of 

partial differential equation of isophote intensity to fill-in missing 

portions in the region under consideration, while the second is based 

on texture inpainting. The filling-in process is automatically done in 

regions containing completely different structures, textures, and 

surrounding backgrounds.  

We have also presented an improved inpainting method based 

on the exemplar-based image inpainting technique. The developed 

method enhances the inpainting robustness and effectiveness by 

including image gradient and second derivative information during 

the inpainting process. Finally, we validated our developed method 

and compare the results with previous methods. Our results show that 

the developed algorithm can reproduce texture and at the same time 

keep the structure of the surrounding area of the inpainted region. 

The method proved to be effective in removing large objects from an 

image, ensuring accurate propagation of linear structures, and 

eliminating the drawback of “garbage growing” which is a common 

problem in other methods. 
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1.1 Introduction 

The story of inpainting begins in the art world. For centuries, 

people have been keenly interested in repairing missing sections of 

oil paintings, and doing so in a way that renders the restoration as 

imperceptible as possible (See Figure 1-1). However, differences of 

opinion regarding the best way to accomplish the retouching have 

been present from art restoration’s inception. 

 

The term inpainting is borrowed from paper art, where restoration 

artists are tasked with restoring faded and damaged paintings. In art 

however, the major concern is to hide the damage in whichever way 

complements the existing pigments and image the best, rather than 

repaint the damage parts of the painting since erasing paintings is 

generally not an option (that would be called overpainting) [1]. 

 

Image retouching ranges from the restoration of paintings to 

scratched photographs or films to the removal or replacement of 

arbitrary objects in images. Retouching can furthermore be used to 

create special effects (e.g., in movies). Ultimately, retouching should 

be carried out in such a way that when viewing the end-result it is 

impossible for an arbitrary observer, or at least very hard, to 

determine that the image has been manipulated or altered.  
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Figure 1-1: Example of manual inpainting performed by a 

professional artist. 

 

Digital Inpainting is a term introduced in [2]. It alludes to how to 

perform inpainting digitally through image processing in some sense. 

Thereby also automating the process and reducing the interaction 

required by the user. 

Ultimately, the only interaction required by the user is the selection 

of the region of the image to be inpainted.  

Reference [2] describes the basic process of inpainting in four steps 

as follows: 

1. The global picture determines how to fill in the gap, the 

purpose of inpainting being to restore the unity of the work. 

2. The structure of the surroundings of the gap is continued into 

the gap, contour lines are drawn via the prolongation of those 

arriving at the boundary of the gap. 

3. The different regions inside the gap, as defined by the contour 

lines are filled with   color, matching those of the boundary of 

the gap. 
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4. The small details are painted (e.g., little white spots on an 

otherwise uniformly blue sky; in other words “texture” is 

added.  
 

Partial differential equations (PDEs) are used for a large variety of 

image processing tasks, and recently, they have been proposed for so 

called inpainting techniques, which use PDE-based interpolation 

methods to fill in missing image data from a given inpainting mask. 

 

Inpainting Vs. Denoising 

Image inpainting is different than image denoising. Image 

inpainting is an iterative method for repairing damaged pictures or 

removing unnecessary elements from pictures. Classical image 

denoising algorithms don't apply to image inpainting. In common 

image enhancement applications, the pixels contain both information 

about real data and the noise, while in image inpainting, there is no 

significant information in the region to be inpainted. The information 

is mainly in the regions surrounding the areas to be inpainted. 

Another difference lies within the size of the data to be processed, the 

region of missing data in inpainting is usually large like long cracks 

in photographs, superimposed large fonts, and so on [3].  

1.2 The Fundamentals of Digital Inpainting  

Digital inpainting refers, as already mentioned, to inpainting 

through some sort of image processing. The digital inpainting process 

can be looked upon as a linear or non-linear transformation as 

illustrated in Figure 1-2, [4] and [5], where 0u  is the original image 

and u is the transformed image (i.e., the digitally inpainted image). 
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Figure 1-2 Linear transformation through an image processor f. 

 

This is also how the concept of image processing is described in 

general [6]. The image processor can be looked upon as a function f 

as follows: 

f: 0u  →u  

that is 

u = f ( 0u ). 

Now, let Ω denote the set of pixels (the region) of the image 0u  to be 

inpainted. Let ∂Ω denote the one pixel wide boundary of Ω so that 

(see also Figure1-3): 

Ω ⊂  0u  , Ω = {the set of pixels of 0u  to be inpainted} 

and 

       ∂Ω⊂ 0u  , ∂Ω = {the boundary pixels of Ω} 

 

 

 

    

 

 
Figure 1-3 The image 0u  , the region Ω to be inpainted and its 

boundary ∂Ω. 
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The following steps describe the general solution to the problem (an 

explanation is given below): 

STEP 1:  SPECIFY Ω 

STEP 2: ∂Ω = THE BOUNDARY OF Ω 

STEP 3: INITIALIZE Ω 

STEP 4: FOR ALL PIXELS X, Y ∈ Ω 

  INPAINT X, Y IN Ω BASED ON INFORMATION IN ∂Ω 

 

The explanation is as follows: row 1 lets the user specify the region 

to be inpainted, row 2 computes the boundary of the region and row 3 

initializes the region by for example, clearing existing color 

information. The for-loop “simply” inpaints the region based on 

information of its surroundings. 

 

A first glance at the pseudo-code gives the impression that it is a 

piece of cake to implement. However, digital inpainting most often 

require a well thought-out strategy regarding the inpainting itself (i.e., 

the for-loop in this case). The general concepts of some of the 

existing approaches are described in chapter two. 

A closely related area is the restoration of films, i.e., image sequences 

[7], [8], [9], [10] and [11]. The fundamental problem can be 

considered as being the same. However, the approach of digital 

inpainting regarding image sequences is significantly different from 

the approach of digital inpainting regarding still images. In order to 

inpaint 
nΩ  in frame n, where n ∈ Ν, (i.e., a still image), information 

to inpaint 
nΩ  is derived out of adjacent frames, i.e., 

n k+Ω  from 

frame n+k, where {k: k ∈ Ζ, k ≠ 0}. 
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This, instead of using information found at the boundary
n∂Ω  of 

frame n. Hence, it is easy to realize that spatial and temporal changes 

such as the movement of an object must be taken into consideration 

when working with image sequences. 

 

Digital inpainting regarding 3D-surfaces resembles digital inpainting 

of 2D images. Geometric partial differential equations (PDE’s) are 

used to inpaint surface holes. However, instead of only working in 

two dimensions, the geometric PDE’s may be used to inpaint surface 

holes in n dimensions [12] and [13]. 

1.3 Thesis Outline 

In Chapter one, we gave a general overview about the digital 

inpainting problem, its definition, and its applications. The contents 

of the other chapters are outlined as follows: 

 

Chapter Two  

This chapter contains a survey of related work. The basic ideas and 

the concepts of some of the existing digital inpainting approaches are 

presented. The underlying theory is briefly explained. 

 

Chapter Three  

It contains our developed digital inpainting algorithm that is based on 

partial differential equations texture synthesis, which could 

successfully restore the texture as well as the structural data in the 

image. Also, we explain the details of digital inpainting algorithms 

that have been implemented. The motivation behind the choice of 

algorithms is also presented. 
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Chapter Four  

It contains the results of our algorithm, and a comparison between 

our results and other inpainting algorithms results. Images 

representing typical inpainting cases are discussed, and the results are 

shown along with the computation times. 

 

Chapter Five  

In this chapter we present the thesis conclusions, and plans for future 

work. 
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The literature contains several inpainting algorithms that have 

been developed. They may roughly be divided into two categories: 

1. Usually PDE based algorithms are designed to connect edges 

(discontinuities in boundary data) or to extend level lines in 

some adequate manner into the inpainting domain, see [14], 

[15], [16], [17], [18] and [19]. They are targeted on 

extrapolating geometric image features, especially edges. i.e. 

they create regions inside the inpainting domain. Most of 

them produce disturbing artifacts if the inpainting domain is 

surrounded by textured regions. 

 

2. Texture synthesis algorithms use a sample of the available 

image data and aim to fill the inpainting domain such that the 

color relationship statistic between neighbored pixels matches 

those of the sample, see [20], [21], [22], [23], [24], [25], [26], 

[27] and [28]. They aim for creating intra–region details. If 

the inpainting domain is surrounded by differently textured 

regions, these algorithms can produce disturbing artifacts. 

In this chapter, we will briefly explain the main ideas and the 

concepts of some of the existing inpainting algorithms. 

2.1 PDE-based Inpainting Algorithm 

Bertalmio et al. pioneered a digital image inpainting 

algorithm based on partial differential equations (PDEs) [2]. A user-

provided mask specifies the portions of the input image to be 

retouched and the algorithm treats the input image as three separate 

channels (R, G and B). For each channel, it fills in the areas to be 

inpainted by propagating information from the outside of the masked 
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region along level lines (isophotes). Isophote directions are obtained 

by computing at each pixel along the inpainting contour a discretized 

gradient vector (it gives the direction of largest spatial change) and 

by rotating the resulting vector by 90 degrees. This intends to 

propagate information while preserving edges. 

 

A 2-D Laplacian is used to locally estimate the variation in color 

smoothness and such variation is propagated along the isophote 

direction. After every few steps of the inpainting process, the 

algorithm runs a few diffusion iterations to smooth the inpainted 

region. Anisotropic diffusion is used in order to preserve boundaries 

across the inpainted region. 

 

Steady state is achieved if the smoothness of the image (its second 

derivative) is constant along the isophotes. The assumption of 

constant smoothness along isophotes is in general not justified. Since 

edges are continued straightly into the inpainting domain, round 

objects tend to develop straight segments meeting at acute angles, 

thus producing kinks and neglecting the principle of continuation of 

direction. 

2.2 Texture-based Inpainting 

 PDE-based inpainting techniques work at the pixel level, and 

have worked well for small gaps, thin structures, and text overlays. 

However, for larger missing regions or textured regions, they may 

generate blurring artifacts.  

 
The main point of interest in PDE based inpainting is a reasonable 
course of edges (discontinuities) which essentially form a one 
dimensional subset of the image. PDE inpainting algorithms usually 
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fail if they are applied to a textured area or in areas containing regular 
patterns.  
 
The reasons for failing are primarily the following: 

1. Textures usually contain locally high gradients which may be 
misinterpreted as edges and thus are falsely continued into the 
inpainting domain. 

2. The only image information that is used by PDE based 
inpainting is the boundary condition contained within a 
narrow band around the inpainting domain. Thus it is not at 
all possible to recognize regular patterns or structures from 
such a small amount of information. 

 
Texture synthesis algorithms operate essentially on one pixel at a 
time and determine its value by looking for similar areas in the 
available image data. The fragment based algorithms can in some 
sense be considered as generalized texture synthesis. Instead of 
copying single pixels whole blocks are transferred into the inpainting 
domain thereby regarding that the resulting inpainting connects 
smoothly and is similar to the available image. Some hybrid 
algorithms which combine one or more techniques can also be used 
in inpainting domain [29]. 
 
In the following we give an overview on texture synthesis algorithms 
which have been used particularly for inpainting purposes: 
 
Cant & Langensiepen [30] create copies of the image to be inpainted 
at various scales. In the coarsest image several candidates for a best 
matching patch are searched. In this search process also mirrored and 
rotated versions of the patches are considered. Once a set of 
candidate patch positions is found they are transferred to higher 
levels where the positions are adjusted to the finer resolution by 
searching in a neighborhood around the best positions found so far. 
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Thus an exhaustive search has only to be performed at the coarsest 
level, on the finer levels only a small subset of the image has to be 
considered. 
 
Criminisi et.al. [31] and [32] use a confidence and a priority function. 
The priority of a pixel depends on the confidence and on the gradient 
magnitude of its surrounding. Pixels lying close to convex corners 
inside the inpainting domain get high priority since they are 
surrounded by many high confidence pixels and thus can be reliably 
inpainted. On the other hand pixels lying close to edges (high 
gradients) are also assigned high priority such that edges are treated 
preferably. Continuation of edges tends to build concave spikes into 
the inpainting domain and the priority of the surrounding pixels 
decreases. Thus a balanced growing of edges and texture patches is 
guaranteed. Patches are taken to be fixed size and constant shape (i.e., 
no rotation or mirroring is considered) and the similarity of patches is 
simply calculated using sum of squared differences.  

2.3 Variational Image Inpainting 

A different approach to inpainting is proposed by Chan and 

Shen [33]. It is a variational-based method. An Euler-Lagrange 

equation is used and the inpainting of Ω is performed by using 

anisotropic diffusion. It is targeted at handling images that do not 

contain intense texture structures (e.g., natural images). The authors 

emphasize that any possible solution to the inpainting problem is 

only a good approximation or a “best” guess, i.e., it is more or less 

impossible to completely restore every detail of Ω. The “best” guess 

is modeled by the optimization of some energy or cost functional. 

The interpolation is limited to creating straight isophotes. 
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Furthermore, the authors distinguish the inpainting problem into two 

levels, the local and global level. The method only relies on local 

information for the inpainting of Ω. This approach also takes into 

account the sampling theorem [34]. The analogy with inpainting is 

that in order to get an accurate reconstruction the sampling distance 

has to be small enough, i.e., Ω has to be small. Thus, the method is 

developed for small Ω. Another reason for focusing on small Ω is the 

fact that it is somewhat difficult and thereby also computationally 

expensive to catch global patterns due to its intense variations in both 

scale and structure [33]. 

 

The principle behind their approach can be summarized as follows: 

Variational denoising and segmentation models all have an 

underlying notion of what constitutes an image. In the inpainting 

region, the models of Chan and Shen reconstruct the missing image 

features by relying on these built-in notions. 

 

As an extension of [33], Chan and Shen, describe a Curvature Driven 

Diffusion (CDD) approach in [35]. It extends the previously 

described method and like its predecessor it is a PDE-based method. 

The extension is aimed at handling larger Ω. It does this by taking 

into account geometric information of the isophotes when defining 

the “strength” of the diffusion process [36]. The diffusion gets 

stronger where the isophotes are having a larger curvature, while it 

dies away as the isophotes stretch out. 

 

The CDD approach may be looked upon as being orthogonal to the 

first inpainting method described in section 2.1. While the latter one 

propagates smoothness along the isophotes, this approach diffuses 
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pixel information along the normal direction (i.e., perpendicular to 

the isophotes). 

 

This first model introduced by Chan and Shen used the total variation 

based image denoising model of Rudin, Osher, and Fatemi [37] for 

the inpainting purpose. The model can successfully propagate sharp 

edges into the damaged domain. However, because the regularization 

term in this model exacts a penalty on the length of edges, this 

technique cannot connect contours across very large distances. 

Another caveat to the method is that it does not always keep the 

direction of isophotes continuous across the boundary of the 

inpainting domain.  

 

Subsequently, Kang, Chan, and Shen [38] introduced a new 

variational image inpainting model that addressed the shortcomings 

of the total variation based one. The model is motivated by the work 

of Nitzberg, Mumford, and Shiota [39], and includes a new 

regularization term that penalizes not merely the length of edges in an 

image, but the integral of the square of curvature along the edge 

contours.  

 

 This allows both for isophotes to be connected across large distances, 

and their directions to be kept continuous across the edge of the 

inpainting region. 
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2.4 Simultaneous Structure and Texture Image 

Inpainting  

 Various algorithms have been proposed to fill missing regions 

with available information from their surroundings. In cases of 

texture synthesis the information required for texture generation is 

from the input image. Since most image areas are not just pure 

texture or pure structure, this approach provides just a first attempt in 

the direction of simultaneous texture and structure filling-in.  

 

The basic idea of the algorithm of Bertalmio et al. [40] is that first 

decomposing the original image into the sum of two images, one 

capturing the basic image structure and the other capturing the texture 

 
Figure 2-1 Decomposition of an image into geometry and texture 
 

 (and random noise inside). The first image (structure image) is 

inpainted following the work by Bertalmio et al. [1], while the other 

one is filled-in with a texture synthesis algorithm following the work 

by Efros et al. [41]. 
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The two reconstructed images are then added back together to obtain 

the final reconstruction of the original data. In other words, the 

general idea was to perform both structure inpainting and texture 

synthesis not on the original image, but on a set of images with very 

different characteristics that are obtained from decomposing the 

given image. The decomposition produced images suited for these 

two reconstruction algorithms. The algorithm works well enough for 

well designed structures in the image, but in case of natural images 

the structures do not have well defined edges so the results might not 

be correct. Also for large unknown regions the algorithm might not 

give plausible results. 

 

2.5 Inpainting Using Navier-Stokes Equations 
In the method described in [3] Bertalmio et al. modified their 

method through an analogy of the Navier-Stokes and a slightly 

different underlying mathematical model. The Navier-Stokes 

equations are non-linear PDE’s. Employing these equations it is 

possible to describe fluid dynamics, e.g., ocean currents, water flow, 

movement of air in the atmosphere and other phenomena. 

 

The method is directly based on the Navier-Stokes equations for fluid 

dynamics, which has the immediate advantage of well-developed 

theoretical and numerical results. This is a new approach for 

introducing ideas from computational fluid dynamics into problems 

in computer vision and image analysis.  

 

This approach [3] uses ideas from classical fluid dynamics to 

propagate isophote lines continuously from the exterior into the 

region to be inpainted. The main idea is to think of the image 
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intensity as a stream function for a two-dimensional incompressible 

flow. The Laplacian of the image intensity plays the role of the 

vorticity of the fluid; it is transported into the region to be inpainted 

by a vector field defined by the stream function. The resulting 

algorithm is designed to continue isophotes while matching gradient 

vectors at the boundary of the inpainting region.  

 

Both the inviscid and viscous problems, with appropriate boundary 

conditions, are globally well-posed in two space dimensions. 

Solutions exist for any smooth initial condition and they depend 

continuously on the initial and boundary data. 

In terms of the stream function, the Laplacian of the stream function, 

and hence the vorticity, must have the same level curves as the 

stream function. The analogy to image inpainting is now clear: the 

stream function for inviscid fluids in 2D satisfies the same equation 

as the steady state image intensity equation. 

 

The point is that, in order to solve the inpainting problem, we have to 

find a steady state stream function for the inviscid fluid equations, 

which is a problem possessing a rich and well developed history. 

The main analogy that this approach is built on is the parallelism 

between the stream function in a 2D incompressible fluid and the role 

of image intensity function "I" in the inpainting algorithm. This 

allows us to design a new inpainting method that will achieve the 

same steady equation. 

 

Let Ω be a region in the plane in which we want to inpaint from 

surrounding data. Assume that the image intensity 
0I  is a smooth 
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function (with possibly large gradients) outside of Ω and we know 

both 
0I  and Δ

0I  on the boundary ∂Ω. 

 

The authors design a ‘Navier-Stokes’ based method for image 

inpainting. In this method the fluid dynamic quantities have the 

following parallel to quantities in the inpainting method. 

 

Navier Stokes Image inpainting 

Stream function ψ  Image intensity  I 

Fluid velocity V= ⊥

∇ ψ  Isophote direction ⊥

∇ I 

Vorticity ω = Δψ  Smoothness ω = Δ  I 

Fluid viscosity ν  Anisotropic diffusion ν  

 

The goal is to solve a form of the Navier-Stokes equations in the 

region to be inpainted. In fluid problems with small viscosity, the 

above dynamics can take a long time to converge to steady state, 

making the method less practical. Instead there are pseudo-steady 

methods that involve replacing the Poisson equation with a dynamic 

relaxation equation. 

 

The existence of viscosity in the equations produces diffusion which 

can result in a blurring of sharp interfaces, and image gradients in the 

inpainting region. Hence it is often desirable to include anisotropic 

diffusion either added directly to the dynamical problem or as an 

additional step in conjunction with the Poisson step.  

 

This analogy also shows why diffusion is required in the original 

inpainting problem. The natural boundary conditions for inpainting 
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are to match the image intensity on the boundary of the inpainting 

region and also the direction of the isophote lines which for the fluid 

problem is effectively a generalized boundary condition that requires 

a Navier-Stokes formulation, introducing a diffusion term. In practice 

nonlinear diffusion (as in Perona-Malik [36], and Rudin, Osher, 

Fatemi [37]) works very well to avoid blurring of edges in the 

inpainting. 

 

2.6 Inpainting Using the Vector Valued Ginzburg-

Landau Equation 

Another inpainting approach is based on the complex 

Ginzburg–Landau equation [42]. The use of this equation is 

motivated by some of its remarkable analytical properties. While 

common inpainting technology is especially designed for restorations 

of two dimensional image data, the Ginzburg–Landau equation can 

straight forwardly be applied to restore higher dimensional data, 

which has applications in frame interpolation, improving sparsely 

sampled volumetric data and to fill in fragmentary surfaces. The 

latter application is of importance in architectural heritage 

preservation. 

 

The Ginzburg–Landau equation is originally developed by Ginzburg 

and Landau [43] to phenomenologically describe phase transitions in 

superconductors near their critical temperature. The equation has 

proven to be useful in several distinct areas besides superconduction. 

 

Solutions of the real valued Ginzburg–Landau equation develop 

homogeneous areas, which are separated by phase transition regions 

that are interfaces of minimal area. In image processing 
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homogeneous areas correspond to domains of constant grey value 

intensities, and phase transitions to edges. Thus the quoted properties 

make the real valued Ginzburg–Landau equation a reasonable method 

for high quality inpainting of binary images. 

 

The authors calculate a complex valued function ˜g, whose real part 

is the geometry image g scaled to a range of values between -1 and 1 

and the imaginary part is nonnegative. 

 

The solution of the Ginzburg–Landau equation reveals high contrast 

in the inpainting domain, which makes it particularly suited for 

inpainting purposes. However, the level lines of the solution of the 

Ginzburg–Landau equation at the boundary of the inpainting domain 

might look kinky. The kinks can be smoothed via coherence 

enhancing diffusion. 

 

The Ginzburg–Landau equation has some favorable properties for 

image processing applications.  For instance it has a tendency to 

connect discontinuities by minimal surface interfaces.  So given an 

image with a missing or unwanted domain Ω  the algorithm 

described in [42] finds a solution of the Ginzburg–Landau equation, 

where the available parts of the image are prescribed as Dirichlet 

boundary condition. 

 
The numerical experiments have shown that best results are obtained 

for locally small inpainting areas which make this approach well 

suited for removing cracks or superimposed texts. 
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The Ginzburg-Landau algorithm does usually not give good results 

when the inpainting domain is large or surrounded by strongly 

textured regions. This is a drawback commonly shared by all PDE 

based inpainting algorithms. Instead they perform well if the 

inpainting domain is locally small, e.g., consists of small stains or 

thin structures. 

 



 

 

 

 

 

 

 

 

 

Chapter 3 

Enhanced PDE Digital 

Inpainting Algorithm 
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Image inpainting is an iterative method for repairing damaged 

pictures or removing unnecessary elements from pictures. This 

activity consists of filling in the missing areas or modifying the 

damaged images in a non-detectable way by an observer not familiar 

with the original images. The development of our PDE-based 

inpainting method follows the work of Sapiro et al. [2].  

The following sections describe the method details and its 

implementation 

3.1 PDE-based Digital Inpainting Algorithm 

 The image inpainting technique is based on filling holes in 

images by propagating linear structures (called isophotes in the 

inpainting literature) into the target region via diffusion (figure 3-1). 

This is analogous to the partial differential equations (PDE) of 

physical heat flow. Color images are considered as a set of three 

images, and for each one, the region is filled by propagating 

information from the outside of the masked region along level 

contours (isophotes).  
 

Isophote direction is obtained by computing the discretized gradient 

vector of each pixel along the contour (the gradient indicates the 

direction of largest color change) and by rotating the resulting vector 

by 90 degrees.  

The isophote direction is defined as 

( , ) ( , ) ( , )i j I i j
j iI⊥ ∂ ∂

=
∂ ∂∇  

where I (i, j) is the image data (gray scale value) at a point (i, j) in the 

two dimensional picture. Image data from the boundary of the 
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inpainting region is then propagated a short distance into the 

inpainting region along these isophotes. 

 
    (a)                                                         (b) 

Figure 3-1: The selected region represented by the grey ellipse. 

(The numbers represent the grey levels) 

(a) Incomplete level lines. 

(b) Inpainted level lines with curved connections. 

 

This intends to propagate information while preserving structures. A 

2-D Laplacian operator is used to locally estimate the variation in 

smoothness. Through propagating such variation, the isophote 

direction is obtained.  

The PDE to solve is then 

. 0I I I
t

⊥∂
+∇ ∇Δ =

∂
 

This has the effect of propagating the smoothness operator IΔ into 

the inpainting region. 

After every step of the inpainting process, a few diffusion iterations 

are taken to smooth the inpainted region. Anisotropic diffusion is 

used in order to preserve edges across the inpainted region [36]. 

Every few steps in the numerical process, an iteration of anisotropic 

diffusion is added by calculating 
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( , , ) ( , , )I k i j t I i j t
t
∂

= ∇
∂

 

at all points within the inpainting region. Here, k (i, j, t) is the 

Euclidean curvature of the two dimensional surface I (i, j, t) at the 

point (i, j). This diffusion process allows the successive isophote 

lines to curve, if need be, as they are propagated. 

 

3.1.1 Numerical Implementation of the Inpainting     

        Algorithm 

The inpainting algorithm goes as follows, 

 

Input:  

• Image to be inpainted, 

• Mask that delimits the position to be inpainted. 

 

Pre-processing step: 

Whole original image undergoes anisotropic diffusion smoothing. 

(To minimize the influence of noise on the estimation of the direction 

of the isophotes arriving at ∂Ω) 

 

Inpainting loop: 

Repeat the following until a steady state is achieved. (Only values 

inside Ω are modified) 

Every few iterations, a step of anisotropic diffusion is applied. 
1( , )  ( , ) ( , ), ( , )n n n

ti j i j t i j i jI I I+
= +Δ ∀ ∈Ω                           (1)     
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where

where

ji IIII
IIII

I   (7)               

n
β (Eq.6) is the projection of (Eq.3) onto the normalized normal 

vector (Eq.5) (the isophote direction), where (Eq.4) is the smoothness 

estimation (the Laplacian). (Eq.7) is a slope-limited version of the 

norm of the gradient of the image. The subscript indexes b and f 

denote the backward and forward differences, while m and M denote 

the minimum and maximum between the derivative and zero.  
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I xf = I (i +1, j) – I (i, j) Forward difference in the x-direction 

I xb= I (i, j) – I (i -1, j) Backward difference in the x-direction 

I yf = I (i, j+1) – I (i, j) Forward difference in the y-direction 

I yb= I (i, j) – I (i, j-1) Backward difference in the y-direction 

   

Δ t (Eq.1) may be looked upon as a speed factor (i.e., small Δ t gives 

makes the algorithm converge slower). The algorithm runs in a total 

of T iterations. The inpainting itself (Eq.1) runs in a total of A 

iterations steps, and B diffusion iterations are performed after the A 

inpaintings. 

 

3.1.2 Anisotropic Diffusion Algorithm 

The implementation of discrete anisotropic diffusion is based on 

the formulas shown in Perona and Malik's literature, Scale-Space and 

Edge Detection Using Anisotropic Diffusion [36]. 

1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
nn n

N N S S E E W Wi j i j I i j I i j I i j I i jC C C CI I λ+ " #= + + + +$ %∇ ∇ ∇ ∇  

The subscripts N, S, E, and W are corresponding to direction north, 

south, east and west respectively. Where 

∇N
),( jiI n  = ),1( jiI n − ),( jiI n−  

∇S
),( jiI n  = ),1( jiI n + ),( jiI n−  

∇E
),( jiI n  = )1,( +jiI n ),( jiI n−  

∇W
),( jiI n  = )1,( −jiI n ),( jiI n−  

),( jiNC
n

 = g (|∇N
),( jiI n |) 
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),( jiSC
n

 = g (|∇S
),( jiI n |) 

),( jiEC
n

 = g (|∇E
),( jiI n |) 

),( jiWC
n

 = g (|∇W
),( jiI n |) 

g ( I∇ ) = 
2)/( KIe ∇−

 

The value of λ is fixed at 0.25 and K is selected between 0.3 and 0.5. 

Although this algorithm succeeds to inpaint small regions (figure 3-2) 

in non detectable way, it can not reproduce texture as well. When we 

run this algorithm to inpaint relatively large regions, it introduces 

blurring in the image (figure 3-3). 

         
Figure 3-2: The bungee cord and the knot tying the man’s feet 

have been removed. 
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Figure 3-3: Limitations of the algorithm: texture is not 

reproduced. 

 

Both image inpainting and texture synthesis have their strengths and 

weaknesses. Image inpainting extends linear structure into the gap by 

utilizing the isophote information of the boundary pixels. The linear 

structures will be naturally extended into the gap. However, since the 

extension actually using the diffusion techniques, artifacts such as 

blur could be introduced. On the other hand, texture synthesis copies 

the pixels from existing parts of the image, thus avoids the blur. The 

shortcoming of texture synthesis is that it focuses on the whole image 

space, without giving higher priority to the linear structures around 

the boundary of the gap. As a result, the linear structures will not be 

naturally extended into the gap. The result would likely have 

distorted lines, and noticeable differences between the gap and its 

surrounding area would be expected (figure 3-4). 

 

One interesting observation is that even though image inpainting and 

texture synthesis seem to differ radically, yet they might actually 
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complement each other. If we could combine the advantages of both 

approaches, we would get a clear gap filling that is the natural 

extension from the surrounding area. We modified the texture 

synthesis approach used by Criminisi et al.[31] to accomplish this 

task. 

 

In Criminisi et al algorithm, the gap will be filled with non-blur 

textures, while at the same time preserve and extend the linear 

structure of the surrounding area.  The algorithm uses a best-first 

algorithm in which the confidence in the synthesized pixel values is 

propagated in a manner similar to the propagation of information in 

PDE inpainting algorithm.  

 

Criminisi et al. use the sampling concept from Efros’ approach [41]. 

The improvement over Efros’ is that the new approach takes isophote 

into consideration, and gave higher priority to those “interesting 

points” on the boundary of the gap. Those interesting points are parts 

of linear structures, and thus should be extended into the gap in order 

to obtain a naturally look. To identify those interesting points, 

Criminisi gives a priority value to all the pixels on the boundary of 

the gap. The “interesting points” will get higher priorities according 

to the algorithm, and thus the linear structures would be extended 

first.  

 

This algorithm, however, has some problems: firstly, it merely adopts 

a simple priority computing strategy without considering the 

accumulative matching errors; secondly, the matching algorithm for 

texture synthesis only uses the color information; thirdly, the filling 

scheme just depends on the priority disregarding the similarity. As a 
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result of lacking robustness, their algorithm sometimes runs into 

difficulties and “grows garbage”. 

 

                                
Figure 3-4: The linear structure is not well preserved 

 

To solve these problems, we propose an enhanced exemplar-based 

inpainting algorithm.  

 

3.2 Enhanced Exemplar-based Inpainting 

Algorithm 
The exemplar-based inpainting algorithm consists mainly of three 

iterative steps, until all pixels in the inpainted region are filled. The 

region to be filled, i.e., the target region is indicated by Ω, and its 

contour is denoted ∂Ω. The contour evolves inward as the algorithm 

progresses, and so we also refer to it as the “fill front.” The source 

region which remains fixed throughout the algorithm, provides 

samples used in the filling process (figure 3-5). In order to find the 

most similar patch in the source region to the target patch, we search 
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the whole source image to find the best fit. The similarity is measured 

by computing the sum of squared distance in color between each 

corresponding pixel in the two patches. 

 
 

 

 

 

 

 

 

Figure 3-5: Notation diagram. Given the patch pΨ , pn  is the 

normal to the contour ∂Ω of the target region Ω and 
pI ⊥

∇  is the 

isophote (direction and intensity) at point p. The entire image is 

denoted with I. 

 

3.3 Modifying the Distance Function 
The similarity measure based only on color is insufficient to 

propagate accurate linear structures into the target region, and leads 

to garbage growing. So, we add to this distance function a new term 

G representing image gradient as an additional similarity metric. 

 

 
)(G)(GG qp Ψ−Ψ=

 
 

Where G is the gradient value for each pixel in the two considering 

patches.  Hence, the similarity function now depends on the 

difference between the patches according to two criteria, the 

difference in color and in gradient values. 
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The gradient of an image measures how it is changing. It provides 

two pieces of information. The magnitude of the gradient tells us how 

quickly the image is changing, while the direction of the gradient tells 

us the direction in which the image is changing most rapidly.  

 

The details of the algorithm implementation is as follows, 

 

1. Computing patch priorities 

Given a patch pΨ centered at the point p for some p ∈∂Ω, its priority 

P (p) is defined as the product of two terms: 

 

P (p) = C (p) D (p)      

 

C (p) is the confidence term and D (p) is the data term, and they are 

defined as follows: 

 

 

   , and 

       

Where pΨ  is the area of ,p αΨ   is a normalization factor 

(e.g., 255α =  for a typical grey-level image), and pn  is a unit vector 

orthogonal to the front ∂Ω in the point p. The priority is computed for 

every border patch, with distinct patches for each pixel on the 

boundary of the target region. The patch with the highest priority is 

the target to fill. 

 

 

Ψ

∑ Ω∩∈Ψ=
p

q
p

)q(C
)p(C

.
( )

p pI
D p n

α

⊥∇
=
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2. Propagating structure and texture information 

Search the source region to find the patch which is most similar 

to
p ∧

Ψ . Formally,  arg min ( , )
q qq p
d∧ ∧Ψ ∈ΩΨ = Ψ Ψ             

The distance  ( , )a bd Ψ Ψ  between two generic patches  a bandΨ Ψ  is 

simply defined as the sum of squared differences (SSD) of the 

already filled pixels in the two patches.  

2
biai

2
biai

Ai

1i

)GG()II(d −+−=∑
=

=  
Where, G presents the image gradient vector, I is the RGB colour 

vector, D is the distance (the larger d is, the less similar they are), and 

A is the known pixels number in
p ∧

Ψ .  

Having found the source exemplar
q ∧

Ψ , the value of each pixel to be 

filled, is copied from its corresponding position. 

 

3. Updating confidence values 

The confidence C (p) is updated in the area delimited by 
p ∧

Ψ , as 

follows: 

      
Ω∩Ψ∈∀= ∧

∧

p
q)p(c)q(c

                 
As filling proceeds, confidence values decay, indicating that we are 

less sure of the color values of pixels near the centre of the target 

region. 
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3.4 Modifying the Data Term  

As observed in the previous section, the results still need 

more enhancements. The problem in previous algorithms is the way 

of computing the patch priorities.  In exemplar-based approaches, 

filling order is critical because the quality of inpainting result is 

highly influenced by the order of the filling process. 

 

In Figure 3-6, the ideal order of filling is shown. In traditional 

method, filling order is evaluated by the priority, which only 

considering the confidence value of a pixel. The information which 

the confidence value of a pixel could give us is not enough, since we 

can't know the patch's "real, visual" clues such as isophotes or how 

regular the patch's color distribution is. 

 
Figure 3-6: The comparison between concentric layer filling and 

desired filling order behavior [32]. (a) The original image. (b, c, 

d ,e) The completion steps in concentric filling order. (b', c', d', e') 

The completion steps in desired filling order. In (b, c, d, e), as lack 

of attention on the line structures, the result may not be desirable. 
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The patch priority is defined mainly by the confidence term, where 

the confidence term is computed by the number of original pixels in 

the source patch. However, that leads to the “onion peel” method, 

where the target region is synthesized from the outside inward, in 

concentric layers. That gives in the end unsatisfying results that 

totally lose the linear structure of the image.  

 

To solve this filling order problem, Criminisi et al. suggests a new 

term to determine the priority of the patch, in combination with the 

confidence term which is the data term. The data term according to 

them is the isophote direction 
pI ⊥

∇  multiplied by a unit vector 

orthogonal to the fill front ∂Ω at the point p. This new definition of 

the priority patch enhances the results because it forces the algorithm 

to take into consideration the isophote direction while propagating 

the information from the source region into the target region. 

We have tested this algorithm, and it gives satisfying results in the 

texture-based images that have simple linear structures. But if the 

images to be inpainted are more complicated, containing 

sophisticated structures of similar textures, the algorithm fails. 

After extensive testing, there have been a few cases where the 

exemplar-based algorithm in some subjective sense fails. Two of 

these cases are shown in Figure 3-7. It is clear that the algorithm 

sometimes make bad choices of choosing the substitute patch. As 

Figure 3-7(c) shows, the algorithm has chosen patches from the 

mountain. This depends on the assigned priority values (and thus the 

filling order). For example, the pixels in the region near the mountain 

have been given a higher priority and have been filled first. This has 

continued throughout the iterations and therefore the best-matching 
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mountain patches have progressively expanded patches from the 

mountain up in the air. Figure 3-7 (e) experiences the same dilemma.  

 

 

Figure 3-7 Two examples of algorithm failure [32] 

(a-c) The original, The mask and the result 
(d-f) The original, The mask and the result 

 
We address this problem in this section, trying to develop an 

algorithm that can deal with such difficult cases. 

 

3.4.1 SDGD Overview 

By reviewing the literature, we find that the second derivative 

in the gradient direction (SDGD) has properties that can be very 

useful in our inpainting problem. The SDGD (also called the second 

directional derivative), a nonlinear operator, can be expressed in first 

and second derivatives. Haralick [44] approximated the SDGD using 

derivatives of a cubic polynomial model approximation of the 

underlying grey level surface. The cubic fit is equivalent to different 

low-pass filters for different derivatives, so that Haralick’s result 
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cannot be interpreted as the SDGD of some linear shift-invariant low-

pass filtered image. Clark [45] and Torre [46] used the SDGD in its 

analytical description. Very fast approximations of the SDGD can be 

obtained using local maximum and minimum filters (grey-scale 

dilation and grey-scale erosion) ([47]; [48]; [49]; [50]). A quantitative 

evaluation between an analytical SDGD, a non analytical SDGD and 

the Marr-Hildreth operator [50] shows comparable performance on 

synthetic test images heavily disturbed by Gaussian noise. 

SDGD filter - A filter that is especially useful in edge finding and 

object measurement is the Second-Derivative-in-the-Gradient-

Direction (SDGD) filter. This filter uses five partial derivatives:  
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Note that xyI = yxI  which accounts for the five derivatives.  

This SDGD combines the different partial derivatives as follows:  

SDGD =  
2 2

2 2

2xx x xy x y yy y

x y

I I I I I I I
I I

+ +

+
 

Where nnI = B * nnG ,  

nn = x, y, xx, yy or xy 

and * represents convolution in the spatial domain. Here B is the 

image array whose Fourier transform has been band-limited by 

multiplying it by a low-pass Gaussian filter. 
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xG and yG  are the first derivatives, with respect to x and y 

respectively, of a Gaussian 
2

2

1
exp( )

22
rG
σπσ

= −
 

of width σ with pixel radial location r, given by 2 2 2r x y= +  where x 

and y are the pixel coordinates relative to the centre of the array. xxG , 

yyG and xyG are the second derivatives. 

As one might expect, the large number of derivatives involved in this 

filter implies that noise suppression is important and that Gaussian 

derivative filters, both first and second order are highly recommended 

if not required.  The standard deviation sigma is the only parameter 

of the Gaussian filter; it is proportional to the size of neighborhood 

on which the filter operates. Pixels more distant from the center of 

the operator have smaller influence, and pixels further from the 

center have negligible influence.  

From figure 3-8, we can see the effect of the SDGD of Gaussian after 

applying it to the image. It demonstrates how the SDGD can detect 

the curved edges precisely. 

 

 

 

 

Figure 3-8 (a) Image of the pyramid. (b) Image after SDGD filter.  
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3.4.2 The Developed Algorithm 

The second derivative in gradient direction (SDGD) produces 

a predictable bias in edge location towards the centers of curvature, 

so it can be used to determine the fill order. 

 

The details of the algorithm implementation is as follows, 

 

1. Computing patch priorities 

Given a patch pΨ centered at the point p for some p ∈∂Ω, its priority 

P (p) is defined as the product of two terms: 

 

P (p) = C (p) D (p)      

 

C (p) is the confidence term, it means how many information we can 

trust in the pixel p's neighborhood. It can be written as 

 

( )
( ) p

q

p

C q
C p

∈ ∩ΩΨ=
∑

Ψ
                      (8) 

Where pΨ  is the area of pΨ  

And D (p) is the data term, it is defined as follows: 

 

   (9) 
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2

2xx
I

I
x
∂

=
∂

     
2

xy
I

I
x y
∂

=
∂ ∂

    x
I

I
x
∂

=
∂

 

2 2

2 2

2
( ) xx x xy x y yy y

x y

I I I I I I I
D p

I I
+ +

=
+



Chapter 3                        Enhanced PDE Digital Inpainting Algorithm 

 42  

2

yx
I

I
x y
∂

=
∂ ∂

     
2

2yy
II
y
∂

=
∂

    y
II
y
∂

=
∂

 

nnI = B * nnG ,  

nn = x, y, xx, yy or xy 

and * represents convolution in the spatial domain, B is the image, 

xG and yG  are the first derivatives, with respect to x and y 

respectively, of a Gaussian 
2

2

1
exp( )

22
rG
σπσ

= −
 

of width σ with pixel radial location r, given by 2 2 2r x y= +  where x 

and y are the pixel coordinates relative to the centre of the array. xxG , 

yyG and xyG are the second derivatives. 

 

During initialization, the function C(p) is set to C(p) = 0 for all point 

p in the unknown area Ω, and C(p) = 1 for all point p in the known 

area I - Ω. The confidence term C (p) may be considered as a measure 

of the amount of reliable information surrounding the pixel p. The 

intention here is to fill first those patches which have more of their 

pixels already filled, with additional preference given to pixels that 

were filled early on (or that were never part of the target region). 

 

At a coarse level, the term C (p) of Eq.8 approximately enforces the 

desirable concentric fill order. As filling proceeds, pixels in the outer 

layers of the target region will tend to be characterized by larger 

confidence values, and therefore be filled earlier; pixels in the center 

of the target region will have lesser confidence values. 
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The data term D (p) of Eq.9 is a function of the curvature of 

isophotes hitting the front ∂Ω at each iteration. This term enforces the 

priority of a patch to get a higher value when an isophote happens to 

"flow" into. This term has crucial importance in our algorithm 

because it pays large attention on linear structures to encourage linear 

structures to be synthesized first, and, therefore propagated securely 

into the target region. Broken curves tend to connect thus fitting in 

with the instincts of human beings. 

 

The priority is computed for every border patch, with distinct patches 

for each pixel on the boundary of the target region. The patch with 

the highest priority is the target to fill. 

 

2. Propagating structure and texture information 

Once all priorities on the fill front have been computed, the patch 

p ∧
Ψ with highest priority is found. We then fill it with data extracted 

from the source region Ω. we propagate image texture by direct 

sampling of the source region. 

 

Search the source region to find the patch which is most similar 

to
p ∧

Ψ . Formally, 

),(dminarg qpq q
ΨΨ=Ψ ∧∧ Ω∈Ψ  

The distance  ( , )a bd Ψ Ψ  between two generic patches  a bandΨ Ψ  is 

simply defined as the sum of squared differences (SSD) of the 

already filled pixels in the two patches.  

 

2

1
( )

i A

ai bi
i

d I I
=

=

= −∑  
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Where, I is the RGB color vector (the larger d is, the less similar they 

are), and A is the known pixels number in
p ∧

Ψ .  

Having found the source exemplar
q ∧

Ψ , the value of each pixel to be 

filled, is copied from its corresponding position. 

This suffices to achieve the propagation of both structure and texture 

information from the source φ  to the target region Ω, one patch at a 

time. In fact, we note that any further manipulation of the pixel 

values (e.g., adding noise, smoothing, etc.) that does not explicitly 

depend upon statistics of the source region, is more likely to degrade 

visual similarity between the filled region and the source region, than 

to improve it. 

 

3. Updating confidence values 

 

After the patch 
p ∧

Ψ has been filled with new pixel values, the 

confidence C (p) is updated in the area delimited by 
p ∧

Ψ  as follows: 

 

      
Ω∩Ψ∈∀= ∧

∧

p
q)p(c)q(c

                 
 

This simple update rule allows us to measure the relative confidence 

of patches on the fill front, without image specific parameters. 

 

As filling proceeds, confidence values decay, indicating that we are 

less sure of the color values of pixels near the centre of the target 

region. 
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3.5 User Interaction 

As one of our goals is the automation of the inpainting 

process, we pay attention to the only phase that the user should be 

involved with our program, mainly the selection of the region to be 

inpainted.. This interaction can not be avoided because it is almost 

impossible for any algorithm to predict which object in the image that 

the user wants to remove, or in other words, which part of the image 

he wants to inpaint. 

 

One important part of digital inpainting is the selection of the region 

to be inpainted Ω. Selection in digital image editing refers to the task 

of extracting (in some sense) an arbitrary object embedded in an 

image [35]. It is clear that this is a user interface related problem, and 

thus, mainly a matter for the human computer-interaction. 

 

The techniques introduced in this thesis do not require the user to 

specify where the novel information comes from. This is done 

automatically (and in a fast way), thereby allowing for 

simultaneously fill-in of multiple regions containing completely 

different structures and surrounding backgrounds. In addition, no 

limitations are imposed on the topology of the region to be inpainted.  

 

The only user interaction required by the algorithm is to mask the 

regions to be inpainted. Since our inpainting algorithm is designed 

for both restoration of damaged photographs and for removal of 

undesired objects on the image, the regions to be inpainted must be 

masked by the user. 
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It has to be mentioned that creating a suitable mask is essential for 

obtaining good results, a mask with fairly irregular contours and 

kinky edges can have an adverse effect on the inpainting process.  

 

In our program, the user can choose between two options to select the 

target region. In the first option, the program will take in two input 

images: the original image and another image that would mask out 

the object. The user can make the mask using any existing software 

containing object selection features such as Adobe Photoshop and 

Paint Shop Pro. 

 

After reading in the mask, we marked the target region that will be 

filled. We consider the mask as a binary image, where the pixels 

belong to the target region are set of ones, and the pixels belong to 

the source region are set of zeros. 

 

This can be expressed mathematically as follows: 

( , ) 0I i j =                  ( , )I i j I∀ ∈ −Ω 

( , ) 1I i j =                   ( , )I i j∀ ∈Ω  

 

For example, in figure 3-9, if the user wants to inpaint the thin cracks 

in the image, he could probably mark these regions with a paint brush 

tool that exists in many image editing programs. Our program 

generates a binary mask as shown in figure 3-9 (c), after the user 

defines which color he used to mark the to-be inpainted region.                                       
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                            (a)                                                         (b) 

 

 

 

 

 

 

 

 

 

 

                                                  (c) 

Figure 3-9 (a) Image for three children. (b) Selection of target 

region using brush tool. (c) Mask generated using our program. 

 

In the second option, the user displays the original image on screen, 

and using the mouse, he specifies a polygonal region of interest 

within the image. Selecting an object via freehand drawing is 

straightforward. The polygon should be a closed one and it is drawn 

by clicking a set of points on the image that represent the vertices of 

the polygon. The enclosed area represents the selection. 

 

Use of normal button clicks adds vertices to the polygon. Pressing 

Backspace or Delete removes the previously selected vertex. A shift-
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click, right-click, or double-click adds a final vertex to the selection 

and then starts the fill; pressing Return finishes the selection without 

adding a vertex. 

 

After the selection of the polygon is finished, the inpainting program 

is executed to fill the region marked by the polygon. The resulted 

image is displayed, and the user has the ability to repeat the whole 

process again and again, by selecting another region to inpaint in the 

image and so on until he gets the result he desires. 

 

For example, in figure 3-10, if the user wants to remove the Sphinx 

from the image, he can use the mouse to point around the object by 

clicking on its vertices. The selected area is the target region, and the 

rest of the image is the source region. 

Then the inpainting program encodes the mask by assigning the pixel 

values inside the polygon to ones, and the pixels outside the polygon 

are assigned to zeros. 

 

 

Figure 3-10 (a) The original Image, (b) The mask. 
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This chapter presents the results of the implemented and 

developed inpainting algorithms. The algorithms have been tested for 

a variety of different cases. The results include cases where the 

algorithms perform well and others where the algorithms fail. The 

original image, the used mask and the corresponding result are shown 

for each case. Also, other data such as the computation time, the 

mask size, i.e., the total number of pixels and the total occluded 

percentage of the image are presented. The developed inpainting 

systems are implemented using a C++ code running on a Pentium IV 

class PC (512 Mb RAM, 2 GHz). 

 

4.1 Restoration Results 
In this section we present the results of inpainting images of 

varying degree of difficulty. The test images include natural scenes 

and full color photographs of complex textures.  

 

In the case shown in figure 4-1, we add an artificial thin crack using 

Photoshop to the image of the famous golden mask of King TUT, 

The crack is then removed by using the PDE-based digital inpainting 

algorithm. The image size is 645 by 925, the number of recovered 

pixels is 4240, and it takes 58 seconds to get this result. Further 

inpainting iterations would not enhance the image anymore, meaning 

the PDE algorithm achieves a stable solution. Every ten iterations of 

inpainting scheme, the target region goes into 3 iterations of 

anisotropic diffusion, where the time step equals 0.1. We can realize 

here that the broken lines are entirely removed, but if the cracks are 

thicker a blurring effect could be introduced to the image.  
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Since the image presented in figure 4-1 is colored one, it is 

treated as a set of three images corresponding to the R,G,B color 

channels, and the PDE algorithm is applied sequentially to each one.  

 

 

 

 

 

 

 

 

  

 

    
                                (a)                                                          (b)                         

 

 

 

 

 

 

 

 

 

 
 

(c) 

Figure 4-1 (a) The original image, (b) The mask, (c) The result. 
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Figure 4-2 shows the famous bust Statue of Queen Nefertiti before 

and after inpainting the damaged parts in her crown. This result is 

achieved by applying the Exemplar-based inpainting algorithm. The 

image size is 376 by 525; the number of recovered pixels is 3024, and 

it takes 114 seconds to achieve this result. The patch size used is 9x9 

pixels. 
                    

 

 

 

 

 

 

 

 

 

 

                      (a)                                                                (b)    

 

 

 

 

 

 

 

 

 

 

                                                           

(c) 

Figure 4-2 (a) The original image, (b) The mask, (c) The result. 
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         Figure 4-3 displays a vandalized and restored ancient Egyptian 

picture from the tomb of Nefertari in Upper Egypt. Shown also is the 

mask used in the inpainting process. The restored image is obtained 

by using the exemplar-based inpainting algorithm. The image size is 

427 by 463 pixels; the number of recovered pixels is 10559, and it 

takes 292 seconds to get this result. The patch size used is again 9x9 

pixels. 
          

 

 

 

 

 

 

 

 

 

 

 

                               (a)                                                         (b) 

 

 

 

 

 

 

 

 

 

 

                                                              (c) 

Figure 4-3 (a) The original image, (b) The mask, (c) The result. 

 



Chapter 4                                                      Results and Comparisons 

 54  

 
In such cases, where the damaged image contains a fair amount of 

texture, it is more suitable to use the exemplar-based inpainting 

algorithm, because the PDE-based inpainting algorithm is not suited 

for texture reproduction. 

Figure 4-4 shows a damaged page of an old Koran manuscript and its 

restoration. We also use the exemplar-based inpainting algorithm in 

this case. The image size is 196 by 362; the number of recovered 

pixels is 6495, and it takes 256 seconds to achieved this result.  

From these results, we can easily observe that the speed of the 

algorithm does not depend only on the size of the to-be inpainted 

region, but also depends on a very important factor which is the size 

of the whole image. This is because the exemplar-based algorithm 

performs an exhaustive search in the whole image in order to find the 

most similar patch in the source region to the target patch. 
 

         (a)                                                  (b)                                                  (c) 

Figure 4-4 (a) The original image, (b) The mask, (c) The result. 
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To test the effectiveness of the SDGD algorithm in cases images of 

pure geometric structure, we implement it for the image of a uniform 

circle having gaps in its perimeter.  The image and the mask defining 

the region to be inpainted is shown in figure 4-5 (a) and (b).  The 

result shown in figure 4-5 (c) is obtained by Sapiro algorithm [2], and 

show excessive diffusion in the inpainted areas of the image. In 

contrast, the results shown in figure 4-5 (d) obtained by using our 

SDGD-based algorithm show a clean and uniform circle perimeter 

without any excessive diffusion.  

The image size for this case is 80 by 80; the number of recovered 

pixels is 829, and it takes about 3 seconds by our algorithm to obtain 

this result. 

 

 

  

 

 

 

     
                                 (a)                                                                (b) 

 

 

 

 
                              (c)                                                                (d) 

Figure 4-5 (a) Synthetic image, (b) The mask, (c) Result using [2], 

(d) Result using SDGD algorithm. 
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  (a)        (b) 

 

 

 

 

 

 

 

 

 

(c) 

Figure 4-6 (a) The original image, (b) The mask, (c) The result. 

 

The case shown in Figure 4-6 is example of removing superimposed 

Arabic text from an image depicting the historic Qaitbay Citadel in 

Alexandria. Although this image is full of texture, we use the PDE-

based inpainting algorithm. This is because the font size of the super 

imposed text is relatively small. The text here is treated as thin cracks. 

The image size is 824 by 599; the number of recovered pixels is 

45556, and it takes 88 seconds to recover the original image. 
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The evolution of the inpainting results is displayed in figures 4-6 (c) 

after 100 iterations. Further inpainting iterations would not enhance 

the image anymore, meaning that the PDE algorithm achieves a 

converged solution. Three iterations of anisotropic diffusion are 

implemented after every ten iterations of the inpainting algorithm.  

 

Two factors affect the speed of the PDE-based algorithm, namely, the 

size of the region to-be inpainted, and the time step size. Using 

numerical experimentation, a value of 0.1 is found satisfactory to get 

the right balance of speed and accuracy.  

  

 
                                 

 

 

 

 

 

 

 (a)                                                                               (b) 

  

  

     

 

 

 

 
 (c) 

 

Figure 4-7 (a) The original image, (b) A mask, (c) The result. 
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More results of removing superimposed text is shown in figure 4-7, 

which displays the solution for a standard case in the inpainting 

literature, depicting a scene in the American city of New Orleans.  

 

It should be noted here, that exact masking of superimposed text may 

be difficult to achieve, especially for small fonts. Moreover, 

enlarging the masked region may produce inaccurate results, and 

increase computational cost.  However, our developed SDGD 

inpainting algorithm is robust enough to handle irregularly masked 

text.  Figure 4-8 shows the results obtained using two different masks 

that approximately trace the borders of superimposed text. The results 

indicate that the SDGD inpainting algorithm has successively 

removed the superimposed text produced identical correct results 

irrespective of the shape of the masked text letters. 

 

          (a)                                             (b)                                           (c) 

 

Figure 4-8 The original image, and two different masks. 
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                    (d)                                                              (e)  

Figure 4-8 The results using the mask (b), and (c)  

 

Another case of removing unwanted text is shown in figure 4-9. 

In this case the mask doesn’t trace the borders of the text letters at all, 

rather, a whole region masks the area around the letters. Still, the 

SDGD inpainting algorithm removed the text, while preserving the 

texture present in the image.   
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                         (a)                                                    (b) 

 

 

 

 

 

 

 

 

 

 

           (c) 

Figure 4-9 (a) The image, (b) A developed mask, (c) The result. 

 

More results of test cases in the inapinting literature are displayed in 

Figure 4-10 and 4-11 showing the restoration of vandalized and 

damaged old photos.   
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                              (a)                                                          (b) 

   

  

 

 
 

 (c) 

Figure 4-10 (a) The image, (b) A mask, (c) The result. 
    

 

 

 

 
 

                (a)                                             (b) 
        

                     

 

 
  

        (c) 

Figure 4-11 (a) The image, (b) A mask, (c) The result. 
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4.2 Object Removal Results 
In this section we present the results of object removal from images. 

Such applications are usually characterized by texture dominated 

images and removal of large areas in the image. 

In figure 4-12, we compare the algorithms of reference [2], [31], and 

our algorithm presented in this thesis. The result of the algorithm 

used in reference [2] shows a marked image blurring and a loss of 

details as shown in figure 4-12(c). While that of reference [31] shown 

in figure 4-12(e) exhibits a break in the linear structure of (the white 

building) in the image. Better image texture and structure are evident 

in the result of our algorithm that includes either gradient or SDGD 

information the in the present algorithm as shown in figure 4-12(e) 

and (f).  The image size for this case is 206 by 308, and the number 

of recovered pixels is 7996. 

 

 
               

            

 

 

 

 

 

 

 

 

 

(a) (b)           

Figure 4-12 (a) The original image, and (b) The mask 
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                  (c)                                                      (d)     

 

 

 

 

 

 

 

 

 

 

                       (e)         (f) 

Figure 4-12 (c) Result of [2], (d) Result of [31], (e) Result of 

Gradient algorithm, (f) Result of SDGD algorithm. 
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This comparison indicates as expected that the PDE-based digital 

inpainting algorithm has some disadvantages, which can be 

summarized as follows: 

• Resulting image is blurred. 

• Large textured regions are not well 

reproduced. 

 

Also the texture Exemplar-based inpainting algorithm fails in some 

cases, and that is because: 

• The algorithm can not accurately propagate 

image structures. 

• The matching criterion for texture 

synthesis that only uses only the color 

information produced artifacts in the image 

(garbage growing) 

The algorithms developed in this thesis eliminate most of these 

drawbacks and produced better results. Our main contribution is the 

use of using the gradient SDGD information to calculate the distance 

function and patch priorities during the propagation of structure and 

texture information.  

 

Another comparison is presented in Figure 4-13 which displays an 

image for a sail boat in the Nile, the mask used to remove the sail 

boat from the image, and the inpainted image.  Figure 4.13 (c) shows 

the inpainted image using Criminisi algorithm [32]. The result of our 

inpainting algorithm is shown in figure 4.13 (d). These results 

demonstrate the effectiveness of our method in eliminating garbage 

growing that could not be avoided by the method of [32]. The size of 
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this image is 200 by 267, and the number of recovered pixels is 7537, 

and the run time is 73 seconds. 

  

                              (a)                                                                         (b) 

                                   (c)                                                                    (d) 

Figure 4-13 (a) The original image, (b) The developed mask, (c) 

The result using algorithm of [32], (d) The result using method 

presented in section 3.1. 
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More results are presented in Figures 4-14 and 4-15. Figure 4-14 

displays an archival picture during the removal of the Abu Sembel 

Temple to a new location during the construction of the High Dam in 

Aswan in southern Egypt. The steel cables and the workers appearing 

in the left image have been removed as shown.  
                   

 

 

                                 

         

 

 

 

 

 

 

 

       (a)                                              (b)                       

 

 

 

 

 

 

 

 

 

 

 

                  

                   (c) 

Figure 4-14 (a) The original image, (b) The developed mask, (c) 

The result 
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Figure 4-15 shows the effectiveness of our modified distant function 

inpainting algorithm in removing large regions in a natural scene 

image, and still preserves the integrity of the image. The size of this 

image is 240 by 160, and the number of recovered pixels is 11196. 

 

                          (a)                                                              (b) 

 

 

 

 

 

 

                  (c) 

Figure 4-15 (a) The original image, (b) The mask, (c) The result. 
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In some cases, removing an object from the image is a difficult task. 

This occurs when the texture of the object to be removed differes 

slightly from the rest of the image texture. Figure 4-16 (a) shows a 

view for the sphinx with the pyramid in the background, and 

algorithm is implemented to remove the sphinx from the image. 

Figure 4-16 (b) depicts the mask used to remove the sphinx from the 

image. The inpainting process for this image is quite difficult, since 

the textures present in the image are very close to each other (the 

pyramid and the sphinx), the result using the exemplar algorithm [32] 

is shown in figure 4-16 (c), and finally the result using our enhanced 

distance function inpainting method is shown in figure 4-16 (d). 

 

                              (a)                                                           (b) 

    (c)                                                         (d)  

Figure 4-16 (a) The original image, (b) A developed mask, (c) The 

result using [32], (d) The result using present algorithm. 
 



Chapter 4                                                      Results and Comparisons 

 69  

A similar case is presented in figure 4-17, where a large region (the 

sphinx) is required to be removed and to recover the occluded part of 

the pyramid. The difficulty in this case is due to the similarity 

between the texture of the pyramid, the sphinx, the sand, and the 

rocks. Additionally, the pyramid has a linear structure and the 

occluding object (the sphinx) has a curved structure.  The result of 

reference [32] algorithm is displayed in figure 4-17 (c) and exhibits 

spurious artifacts in the inpainted image. A satisfactory result is 

achieved using our algorithm as shown in figure 4-17 (d). 

  

 

 
 
 
 
 

                     (a)                                                         (b) 
                                                     

 

(c) (d) 
 

Figure 4-17 (a) The original image, (b) A developed mask, (c) The 
result using [31], (d) The result using SDGD algorithm. 

 
 
Figure 4-18 displays an image for a man sitting on a curved rock. 

This test case is reported in [6], and the author shows how the 

exemplar-based inpainting algorithm developed by Criminisi [31] 

fails to decide on the right patch to use during the inpainting process, 
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and produces artifacts as shown in figure 4-18 (c). Better result is 

achieved using our developed algorithms as shown in figure 4-18 (d).  

 

 

 

 
 
 
 
 
 
 

                                                                
                
               (a)                                                                  (b) 
  

                                  (c)                                                                       (d)  
 

Figure 4-18 (a) The original image, (b) A mask, (c) The result 

using [31], (d) The result using SDGD algorithm. 
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4.3 Inpainting Algorithms Parameters 
          In this section, we discuss the factors affecting the speed of the 

inpainting algorithms. The two main parameters are the size of the 

region to be inpainted and the patch size. This discussion will help us 

to evaluate our proposed inpainting algorithm and to compare it with 

the developed inpainting algorithms presented earlier in chapter 3. 

 

4.3.1 Mask Size  

         The first factor we experiment with is the size of the inpainted 

region. As a test case for the PDE-based inpainting algorithm, we 

chose the Quaitbay citadel image (figure 4-6). We executed the 

algorithm using the different mask sizes shown in figure 4-19. 

 

                 (a)                                                 (b)                                               (c) 
                                                         

                    
                  (d)                                                 (e)                                               (f)     

 

Figure 4-19 (a)-(f) Different masks for the Quaitbay Citadel 

image. 

 



Chapter 4                                                      Results and Comparisons 

 72  

As expected, we find that the larger the size of the mask, the more 

time needed by the algorithm to achieve satisfying results.  The 

relationship between the number of recovered pixels and the time 

taken by the PDE-based inpainting algorithm is shown in figure 4-20. 

From this graph we conclude that the relationship between the mask 

size and the speed of the algorithm is linear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-20 PDE algorithm evaluation graph. 

 

 

 

The same procedure is implemented for the texture-based inpainting 

algorithm; we used the different masks shown in figure 4-21. We 

implemented the algorithm for the image of Nefertari’s Tomb (figure 

6-3), and the result also exhibits a linear relationship as shown in 

figure 4-22  
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  (a)                                     (b) 
 
 
 

 
 
 
 
 

 
 

                        (c)                                     (d) 
Figure 4-21. Different masks of Nefertari’ Tomb image. 
 

 

 

 

 

 

 

 

   

Figure 4-22 Texture-based algorithm evaluation graph 
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4.3.2 Patch Size  

  The second important factor that affects the performance of 

any texture based inpainting algorithm is the patch size. However, it 

is difficult to set a universal patch size that can be applied to all 

images. Using large patch size, the filling rate is high, which leads to 

faster execution time of the inpainting algorithm. However, there are 

more important implications on choosing the right patch size. 

 

As stated in reference [31], the patch should be slightly larger than 

the largest distinguishable texture element.  If the patch size is too 

small, it will have little or no texture characteristics which result in 

the production of a mass of small fragments. On the other hand, if it 

is too large, the patch loses the local texture details, which will lead 

to a mismatch. The proper size of the patch as given in [31] is 9x9 

pixels. Experimenting with the patch size however, indicate that the 

proper patch size can vary from one image to another. The results 

shown in figure 4-23 show the effect of changing the patch size on 

the quality of the inpainted image. Our experimentation indicates that 

in general, a patch size between 7x7 and 11x11 pixels should be 

appropriate for most images. 
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                      (a)                                                             (b) 

                      (c)                                                                      (d) 

                        (e)                                                                         (f) 

Figure 4-23 (a) Sail boat image, (b) The mask, (c) Patch size=5x5, 
(d) Patch size=7x7, (e) Patch size=9x9, and (f) Patch size=11x11. 
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5.1 Conclusions 

In this thesis we have developed an improved inpainting 

method combining PDE-based and texture-based algorithms. The 

choice of using Texture or PDE algorithms depends on the nature of 

the image to be inpainted. The PDE algorithm is used for structure 

dominated images to fill-in narrow or crack type regions, while the 

texture algorithm is more suited for textured images. The time 

required for the inpainting process depends on the size of the image 

and the regions to be inpainted, and it ranges form few seconds to 

several minutes for large images.  

 
Our main contribution in the enhanced inpainting method includes: 

1. Modifying the patch filling order scheme by setting the data 

term to include second derivative information in the gradient 

direction (SDGD). 

2. Modifying the distance metric function to include the image 

gradient information in addition to intensity values. 

Several test images have been used and the results demonstrate that 

our developed algorithm can reproduce texture and at the same time 

keep the structure of the surrounding area of the inpainted region.  

Our method proved to be effective in removing large objects from an 

image, ensuring accurate propagation of linear structures, and 

eliminating the drawbacks of “garbage growing” and image blurring 

which are common problems in other methods. The results obtained 

are preferable to those obtained by other similar methods.  

The results presented in the thesis demonstrate the effectiveness of 

the inpainting method for several test cases involving the restoration 
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of old and damaged pictures or manuscripts, and the removal of 

superimposed text and large objects. 

We hope that the findings of this thesis may help to conserve and 

enhance old manuscripts and other cultural treasures which otherwise 

would be lost to decay. 

 

5.2 Future Work 
 

Future work is planned in two areas: 

 

3D Extension  

We aim to extend the presented methodology to three 

dimensions for applications involving damaged monuments and 

historical artifacts.  

 

Decreasing user intervention 

The inpainting system should be able to automatically switch 

between PDE-based algorithm and Texture-based algorithm 

according to the nature of the image. As already pointed out in [40] 

each separate step of the inpainting algorithm could be performed 

with several different sub-algorithms. Since it is unlikely that one 

combination performs optimally, it would be desirable to have a 

criterion for automatically choosing the appropriate algorithms. This 

criterion would have to include the form of the inpainting domain, 

image contents, and amount of texture.  
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تطو;ر خو')9م"ة لاستعا23 'لقطع 'لناقصة في 'لصو) 'لرقم"ة 
باستخد'2 'لمعا/لا- 'لتفاضل"ة 'لجزئ"ة  

 

تتنا"= >;: %ل!سالة 3!%سة  لمشكلة %ستعا23 ,ج0%ء ناقصة ," تالفة في %لص"! 

)ل%قم"ة باستخ5)8 )لمعا5لا3 )لتفاضل"ة )لج/ئ"ة - )ل,%+ )ل%"اض"ة )لت%ك"ب"ة  

مشكلة 'ستعا+* 'لص)% 'ل%قم"ة.لح!   

6كما! *لأج2*ء *لمتآكلة +& *لمفق&%$ ( مث!  تعنى'ستعا+* 'لص)% 'ل%قم"ة !

&لتشققا/ 6# &لأج9&ء &لتي فق7/ 6ثناء نق2 &لب*انا/ لاسلك*ا) في &لص#"! 

بغ!, +عا'& "ح'& %لص"!.  

'لع0+0 م/ 'لت-ب+قا) 'لم%مة مث!  م'ا2 *لاستعا,+ *ل!قم'ة للص"!خ$#"!"ل

لب#انا! /لمفق+*( في عمل#ا! ) !ست%جا" !"ة!ثلأ! )لص$( $)لمخ#$#ا! ت$م"!

! تغ))! محت")ا& %لص"!! 'ل%قم"ة%لص"! ضغ& ملفا!)للاسلكي!  $سا!"لا

.(لس"نمائ"ة عم3 خ12 0 م.ث,%+ خاصة في %لأفلا!  

 

ح -لاستعا0( -ل*قم8ة للص%* ملأ 5ج3-ء متع00( م. -لص%*() تحت%$ على ت!ت!

ة " ل9ا خلف*ا6 غ*# نم!*ة. بالإضافة &ن, لا *فت#' &% ش#"! *(اك& مختلف

مح66! سلفا لت"م01 &لج.ء &لناق( م' &لص#"!.  

 

"لاستعا!) "ل/قم,ة للص6/ تستخ!3 ن1/,ا0 /,اض,ة معق!) ت&!% لإم!"! 

تعتم' *لتقن&ا+ *لح'&ثة على !*لأج5*ء *لناقصة بال.-ك+ *لتحتي للص#"!. 

معا*لا6 &لتفاضل.ة &لج0ئ.ة- , نش( *(جة &لانحناء "ستق%"ء "لنقا* "لمجا&%$# "ل

لباقي *ج)&ء &لص#"!.  
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2ق& ت= فى ;:9 %ل,سالة بناء 2ت-2*, خ2%,1م*ا/ ب-,*قت*$ تعتم&%$ على 

",لت!ك'با- ,لبنائ'ة للص"!  تفاضل"ة 'لج$ئ"ةلمعا#لا! %لح& %لع""!   

مجم%عة م! بجان8 '.&ستنا لمشكلة &ستعا'2 &لص0. &ل.قم,ة &عتما'& على ح! 

!لمع-لا? !لتفاضل3ة !لج;ئ3ة9 فق- !7تممنا 34ضا باستعا-( !لص+*( في حالة !"! 

كان: 'لمساحا: 'لم('" 'ست(جاع6ا كب1(! ح01 تفش- مع,+ 'ل*() 'لمعتم"! 

على )لنقا( )لمجا#"!.  

 

م< خلا> ;:" "لبح8 قمنا بتق#0! خ3"12م0ة مٌحسنة تعتم# على "ستخ#"! 

,لص1.2 ع' /.)- ,ضافت)' &امت)' &ما مع"!  معل,ما* م( جم'ع %ج#"ء

تغ""!ش)5 &لل4; فى 9ج8&ء &لص4!5  4 &لتفاض' &لثاني في &تجا+ مع)' &لتغ""!.   

6ق! 3ثبت? *<= %ل>+"قة كفائت4ا 6 فعال"ت4ا بع! 23 قمنا باختبا+*ا على %لع!"! 

م7 'لص)4 5'. 'لت4ك1با. ) 'لتك)1نا. 'لمختلفة ) 'لمعق"!.  

لنتائج مع نتائج *ل/.6 *لسابقة 3 ج%نا 01 *ل/.-قة *لتي ق%منا"ا بمقا'نة $#" ! 

تم0?' بق>/ت;ا على &ست/جا5 &لتفاص30 &لصغ0/. ( في نف* &ل(ق' &لحفا! 

على )ل17ك8 )ل7ن(سى للمساحا3 )لمح01ة بالج-ء )لم%)( )ست%جاع!.  

 

 كما @5 )ل+?8قة )لتي ت;صلنا )ل78ا م5 خلا2 01) )لبح- )ست+اع( )لتغل$ على

+لمشاك- +لتي )'&8 مع +ل6&5 +لسابقة مث- تش#, +لص#& # )'#& تش#"! 

غ+! مت"قع بالص"!.  
 
 

7تتكو3 2ذ0 /لرسالة من خمس فصو!:  

تم ف56 #لتقد.م لمحتو.ا- #لرسالة $عر' #لد$#فع  :�����

C&لاAد&? للق*ا= ب;ذ& &لبحث7 كما تم عر1 مختصر لبق*ة &جز&ء &لرسالة.  
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5شتمل علي عر. لاخر ما توصل $ل"!   :�����

0لباحثو< فى ;ذ0 0لمجا! ,ما تم تطو5ر3 من خو0/.م)ا& , تقن)ا& للوصو! 

1لى .فضل نتائج ممكنة.  

 

 3حتو0 عر. مفصل !تحل)ل للطر" ! :�����

>لخو><@م#ا?  >لمطو<= 0>لمطبقة بالرسالة 4بقنا1ا 0 ك#ف -مكنا تلافي ع#و! 

'لطر) 'لسابقة.  

 

7تضمن عر2 لنتائج  'لخو'",م*ا) 'لمطو"!  :���

بالرسالة 'مقا-نة 'تحل2ل &لنتائج من ح2ث جو)! &لصو-&لمستعا)! ' &لفتر! 

&لزمن6ة &لتي 3ستغرق-ا &لخو&()' &لعد"!.  

 

:عر7 ف45 !لاستنتاجا. !لمستخلصة من #ذ!  :������ �����

ل *ضافا' &خر# فى .لبحث7 كما تم عر2 .لنقا/ .لتى +مكن من خلال$ا عم

موضو' &لرسالة.   



    
 
 

عة ع%ن شمسجام  
 كل/ة (لحاسبا! *(لمعلوما!  

 قسم علو' &لحاسب   

 

 
                                                                        

 
تطو:ر خو%!7م5ة لاستعا0/ %لقطع %لناقصة في %لصو! 
'لرقم"ة باستخد'2 'لمعا/لا- 'لتفاضل"ة 'لجزئ"ة  

 
 

&لى قسم علو' &لحاسب )سالة مقدمة   
ما!كل.ة &لحاسبا) '&لمعلو جامعة ع%ن شمس -  

 كجزء من من متطلبا! (لحصو9 على 67جة (لماجست1ر فى (لحاسبا! *(لمعلوما!
 
 
 مـن

 1اسم/ن نا+* محمد %لجلالي
 بكالو0/و. (لحاسبا! *(لمعلوما!

 (علو' &لحاسب)
2002 

 كل/ة (لحاسبا! *(لمعلوما!
 جامعة قنا' &لسو"س

 
 

 تحت "شر"!
 

*.( / ت'مو% نظمي                               *.( / عصا' حامد عطا  
&ستا+ علو' &لحاسب                                                        &ستا+ علو' &لحاسب  

كل/ة (لحاسبا! *(لمعلوما!                                              كل/ة (لحاسبا! *(لمعلوما!  
جامعة ع%ن شمس                                   جامعة ع%ن شمس                         

 
 +. ب)( س)د 'لدسوقى
 'ستا- 'لر+اض(ا) 'لمساعد
 كل"ة -لترب"ة ببو%سع"د
 جامعة قنا' &لسو"س

 
 

2007  'لقا#ر!  


