
INTRODUCTION TO
COMPUTER SCIENCE
Dr. Yasmine El-Glaly
Fall 2013

Ch.6: Programming Languages
•  Traditional Programming Concepts
• Procedural Units

Programming

Programming

Traditional
Programming

• A program consists of a
collection of statements
• Declarative statements define

customized terminology that is used
later in the program, such as the
names used to reference data items;

•  imperative statements describe
steps in the underlying algorithms;

•  comments

Procedural Units

Variables and Data Types
• High-level programming languages allow locations in main

memory to be referenced by names called: variable
•  the type of data that will be stored at the memory: data

type e.g. integer, float, character, Boolean
• Examples:

same type can normally be declared in the same declaration statement. For
example, the statement

int Height, Width;

would declare both Height and Width to be variables of type integer. Moreover,
most languages allow a variable to be assigned an initial value when it is
declared. Thus,

int WeightLimit = 100;

would not only declare WeightLimit to be a variable of type integer but also
assign it the starting value 100.

Other common data types include character and Boolean. The type
character refers to data consisting of symbols, probably stored using ASCII or
Unicode. Operations performed on such data include comparisons such as
determining whether one symbol occurs before another in alphabetical order,
testing to see whether one string of symbols appears inside another, and con-
catenating one string of symbols at the end of another to form one long string.
The statement

char Letter, Digit;

could be used in the languages C, C++, C#, and Java to declare the variables
Letter and Digit to be of type character.

The type Boolean refers to data items that can take on only the values true
or false. Operations on data of type Boolean include inquiries as to whether the
current value is true or false. For example, if the variable LimitExceeded was
declared to be of type Boolean, then a statement of the form

if (LimitExceeded) then (...) else (...)

would be reasonable.
The data types that are included as primitives in a programming language,

such as int for integer and char for character, are called primitive data types.
As we have learned, the types integer, float, character, and Boolean are common
primitives. Other data types that have not yet become widespread primitives
include images, audio, video, and hypertext. However, types such as GIF, JPEG,
and HTML might soon become as common as integer and float. Later (Sections
6.5 and 8.4) we will learn how the object-oriented paradigm enables a program-
mer to extend the repertoire of available data types beyond the primitive types
provided in a language. Indeed, this ability is a celebrated trait of the object-
oriented paradigm.

In summary, the following program segment, expressed in the language C
and its derivatives C++, C#, and Java, declares the variables Length and Width
to be of type float, the variables Price, Tax, and Total to be of type integer,
and the variable Symbol to be of type character.

float Length, Width;
int Price, Tax, Total;
char Symbol;

In Section 6.4 we will see how a translator uses the knowledge that it gathers from
such declaration statements to help it translate a program from a high-level lan-
guage into machine language. For now, we note that such information can be used

2516.2 Traditional Programming Conceptssame type can normally be declared in the same declaration statement. For
example, the statement

int Height, Width;

would declare both Height and Width to be variables of type integer. Moreover,
most languages allow a variable to be assigned an initial value when it is
declared. Thus,

int WeightLimit = 100;

would not only declare WeightLimit to be a variable of type integer but also
assign it the starting value 100.

Other common data types include character and Boolean. The type
character refers to data consisting of symbols, probably stored using ASCII or
Unicode. Operations performed on such data include comparisons such as
determining whether one symbol occurs before another in alphabetical order,
testing to see whether one string of symbols appears inside another, and con-
catenating one string of symbols at the end of another to form one long string.
The statement

char Letter, Digit;

could be used in the languages C, C++, C#, and Java to declare the variables
Letter and Digit to be of type character.

The type Boolean refers to data items that can take on only the values true
or false. Operations on data of type Boolean include inquiries as to whether the
current value is true or false. For example, if the variable LimitExceeded was
declared to be of type Boolean, then a statement of the form

if (LimitExceeded) then (...) else (...)

would be reasonable.
The data types that are included as primitives in a programming language,

such as int for integer and char for character, are called primitive data types.
As we have learned, the types integer, float, character, and Boolean are common
primitives. Other data types that have not yet become widespread primitives
include images, audio, video, and hypertext. However, types such as GIF, JPEG,
and HTML might soon become as common as integer and float. Later (Sections
6.5 and 8.4) we will learn how the object-oriented paradigm enables a program-
mer to extend the repertoire of available data types beyond the primitive types
provided in a language. Indeed, this ability is a celebrated trait of the object-
oriented paradigm.

In summary, the following program segment, expressed in the language C
and its derivatives C++, C#, and Java, declares the variables Length and Width
to be of type float, the variables Price, Tax, and Total to be of type integer,
and the variable Symbol to be of type character.

float Length, Width;
int Price, Tax, Total;
char Symbol;

In Section 6.4 we will see how a translator uses the knowledge that it gathers from
such declaration statements to help it translate a program from a high-level lan-
guage into machine language. For now, we note that such information can be used

2516.2 Traditional Programming Concepts

same type can normally be declared in the same declaration statement. For
example, the statement

int Height, Width;

would declare both Height and Width to be variables of type integer. Moreover,
most languages allow a variable to be assigned an initial value when it is
declared. Thus,

int WeightLimit = 100;

would not only declare WeightLimit to be a variable of type integer but also
assign it the starting value 100.

Other common data types include character and Boolean. The type
character refers to data consisting of symbols, probably stored using ASCII or
Unicode. Operations performed on such data include comparisons such as
determining whether one symbol occurs before another in alphabetical order,
testing to see whether one string of symbols appears inside another, and con-
catenating one string of symbols at the end of another to form one long string.
The statement

char Letter, Digit;

could be used in the languages C, C++, C#, and Java to declare the variables
Letter and Digit to be of type character.

The type Boolean refers to data items that can take on only the values true
or false. Operations on data of type Boolean include inquiries as to whether the
current value is true or false. For example, if the variable LimitExceeded was
declared to be of type Boolean, then a statement of the form

if (LimitExceeded) then (...) else (...)

would be reasonable.
The data types that are included as primitives in a programming language,

such as int for integer and char for character, are called primitive data types.
As we have learned, the types integer, float, character, and Boolean are common
primitives. Other data types that have not yet become widespread primitives
include images, audio, video, and hypertext. However, types such as GIF, JPEG,
and HTML might soon become as common as integer and float. Later (Sections
6.5 and 8.4) we will learn how the object-oriented paradigm enables a program-
mer to extend the repertoire of available data types beyond the primitive types
provided in a language. Indeed, this ability is a celebrated trait of the object-
oriented paradigm.

In summary, the following program segment, expressed in the language C
and its derivatives C++, C#, and Java, declares the variables Length and Width
to be of type float, the variables Price, Tax, and Total to be of type integer,
and the variable Symbol to be of type character.

float Length, Width;
int Price, Tax, Total;
char Symbol;

In Section 6.4 we will see how a translator uses the knowledge that it gathers from
such declaration statements to help it translate a program from a high-level lan-
guage into machine language. For now, we note that such information can be used

2516.2 Traditional Programming Concepts

Array
• A block of elements of the same type such as a one-

dimensional list, a two-dimensional table with rows and
columns, or tables with higher dimensions.

•  Indices
• Example:

to identify errors. For example, if a translator found a statement requesting the addi-
tion of two variables that had been declared earlier to be of type Boolean it should
probably consider the statement to be in error and report this finding to the user.

Data Structure
In addition to data type, variables in a program are often associated with data
structure, which is the conceptual shape or arrangement of data. For example,
text is normally viewed as a long string of characters whereas sales records might
be envisioned as a rectangular table of numeric values, where each row repre-
sents the sales made by a particular employee and each column represents the
sales made on a particular day.

One common data structure is the array, which is a block of elements of the
same type such as a one-dimensional list, a two-dimensional table with rows and
columns, or tables with higher dimensions. To establish such an array in a pro-
gram, many programming languages require that the declaration statement
declaring the name of the array also specify the length of each dimension of the
array. For example, Figure 6.5 displays the conceptual structure declared by the
statement

int Scores[2][9];

in the language C, which means “The variable Scores will be used in the
following program unit to refer to a two-dimensional array of integers having
two rows and nine columns.” The same statement in FORTRAN would be
written as

INTEGER Scores(2,9)

Once an array has been declared, it can be referenced elsewhere in the program
by its name, or an individual element can be identified by means of integer val-
ues called indices that specify the row, column, and so on, desired. However,
the range of these indices varies from language to language. For example, in C
(and its derivatives C++, Java, and C#) indices start at 0, meaning that the entry
in the second row and fourth column of the array called Scores (as declared
above) would be referenced by Scores[1][3], and the entry in the first row
and first column would be Scores[0] [0]. In contrast, indices start at 1 in a
FORTRAN program so the entry in the second row and fourth column would be
referenced by Scores(2,4) (see again Figure 6.5).

In contrast to an array in which all data items are the same type, an aggregate
type (also called a structure, a record, or sometimes a heterogeneous array)

252 Chapter 6 Programming Languages

Scores

Scores (2,4) in
FORTRAN where
indices start at one.

Scores [1][3] in C
and its derivatives
where indices start
at zero.

Figure 6.5 A two-dimensional array with two rows and nine columns

to identify errors. For example, if a translator found a statement requesting the addi-
tion of two variables that had been declared earlier to be of type Boolean it should
probably consider the statement to be in error and report this finding to the user.

Data Structure
In addition to data type, variables in a program are often associated with data
structure, which is the conceptual shape or arrangement of data. For example,
text is normally viewed as a long string of characters whereas sales records might
be envisioned as a rectangular table of numeric values, where each row repre-
sents the sales made by a particular employee and each column represents the
sales made on a particular day.

One common data structure is the array, which is a block of elements of the
same type such as a one-dimensional list, a two-dimensional table with rows and
columns, or tables with higher dimensions. To establish such an array in a pro-
gram, many programming languages require that the declaration statement
declaring the name of the array also specify the length of each dimension of the
array. For example, Figure 6.5 displays the conceptual structure declared by the
statement

int Scores[2][9];

in the language C, which means “The variable Scores will be used in the
following program unit to refer to a two-dimensional array of integers having
two rows and nine columns.” The same statement in FORTRAN would be
written as

INTEGER Scores(2,9)

Once an array has been declared, it can be referenced elsewhere in the program
by its name, or an individual element can be identified by means of integer val-
ues called indices that specify the row, column, and so on, desired. However,
the range of these indices varies from language to language. For example, in C
(and its derivatives C++, Java, and C#) indices start at 0, meaning that the entry
in the second row and fourth column of the array called Scores (as declared
above) would be referenced by Scores[1][3], and the entry in the first row
and first column would be Scores[0] [0]. In contrast, indices start at 1 in a
FORTRAN program so the entry in the second row and fourth column would be
referenced by Scores(2,4) (see again Figure 6.5).

In contrast to an array in which all data items are the same type, an aggregate
type (also called a structure, a record, or sometimes a heterogeneous array)

252 Chapter 6 Programming Languages

Scores

Scores (2,4) in
FORTRAN where
indices start at one.

Scores [1][3] in C
and its derivatives
where indices start
at zero.

Figure 6.5 A two-dimensional array with two rows and nine columns

Structure
• A block of data in which different elements can have

different types.

•  a programmer can use the structure name (Employee) to
refer to the entire aggregate

•  or can reference individual fields within the aggregate by
means of the structure name followed by a period and the
field name (such as Employee.Age).

is a block of data in which different elements can have different types. For
instance, a block of data referring to an employee might consist of an entry called
Name of type character, an entry called Age of type integer, and an entry called
SkillRating of type float. Such an aggregate type would be declared in C by the
statement

struct {char Name[25];
int Age;
float SkillRating;}
Employee;

which says that the variable Employee is to refer to a structure (abbreviated
struct) consisting of three components called Name (a string of 25 characters),
Age, and SkillRating (Figure 6.6). Once such an aggregate has been declared, a
programmer can use the structure name (Employee) to refer to the entire aggre-
gate or can reference individual fields within the aggregate by means of the struc-
ture name followed by a period and the field name (such as Employee.Age).

In Chapter 8 we will see how conceptual constructs such as arrays are actu-
ally implemented inside a computer. In particular, we will learn that the data
contained in an array might be scattered over a wide area of main memory or
mass storage. This is why we refer to data structure as being the conceptual shape
or arrangement of data. Indeed, the actual arrangement within the computer’s
storage system might be quite different from its conceptual arrangement.

Constants and Literals
Sometimes a fixed, predetermined value is used in a program. For example, a
program for controlling air traffic in the vicinity of a particular airport might con-
tain numerous references to that airport’s altitude above sea level. When writing
such a program, one can include this value, say 645 feet, literally each time it is
required. Such an explicit appearance of a value is called a literal. The use of lit-
erals leads to program statements such as

EffectiveAlt ← Altimeter + 645

where EffectiveAlt and Altimeter are assumed to be variables and 645 is a
literal. Thus, this statement asks that the variable EffectiveAlt be assigned
the result of adding 645 to the value assigned to the variable Altimeter.

2536.2 Traditional Programming Concepts

Meredith W Linsmeyer

23

6.2

Employee
Employee.Age

Employee.Name

Employee.SkillRating

Figure 6.6 The conceptual layout of the structure Employee

Traditional
Programming

• Constants
• A fixed, predetermined value
• Example: Procedural Units

In most programming languages, literals consisting of text are delineated
with quotation marks to distinguish them from other program components. For
instance, the statement

LastName ← “Smith”

might be used to assign the text “Smith” to the variable LastName, whereas the
statement

LastName ← Smith

would be used to assign the value of the variable Smith to the variable LastName.
Often, the use of literals is not good programming practice because literals

can mask the meaning of the statements in which they appear. How, for
instance, can a reader of the statement

EffectiveAlt ← Altimeter + 645

know what the value 645 represents? Moreover, literals can complicate the task of
modifying the program should it become necessary. If our air traffic program is
moved to another airport, all references to the airport’s altitude must be changed. If
the literal 645 is used in each reference to that altitude, each such reference through-
out the program must be located and changed. The problem is compounded if the
literal 645 also occurs in reference to a quantity other than the airport’s altitude.
How do we know which occurrences of 645 to change and which to leave alone?

To solve these problems, programming languages allow descriptive names to
be assigned to specific, nonchangeable values. Such a name is called a constant.
As an example, in C++ and C#, the declarative statement

const int AirportAlt = 645;

associates the identifier AirportAlt with the fixed value 645 (which is consid-
ered to be of type integer). The similar concept in Java is expressed by

final int AirportAlt = 645;

Following such declarations, the descriptive name AirportAlt can be used in
lieu of the literal 645. Using such a constant in our pseudocode, the statement

EffectiveAlt ← Altimeter + 645

could be rewritten as

EffectiveAlt ← Altimeter + AirportAlt

which better represents the meaning of the statement. Moreover, if such con-
stants are used in place of literals and the program is moved to another airport
whose altitude is 267 feet, then changing the single declarative statement in
which the constant is defined is all that is needed to convert all references to the
airport’s altitude to the new value.

Assignment Statements
Once the special terminology to be used in a program (such as the variables and
constants) has been declared, a programmer can begin to describe the algo-
rithms involved. This is done by means of imperative statements. The most basic
imperative statement is the assignment statement, which requests that a value

254 Chapter 6 Programming Languages

Traditional
Programming

• Assignment Statements
• The most basic imperative
statement is the assignment
statement

• Example:

• Rules of operator precedence

• parentheses

Procedural Units

be assigned to a variable (or more precisely, stored in the memory area identi-
fied by the variable). Such a statement normally takes the syntactic form of a
variable, followed by a symbol representing the assignment operation, and then
by an expression indicating the value to be assigned. The semantics of such a
statement is that the expression is to be evaluated and the result stored as the
value of the variable. For example, the statement

Z = X + Y;

in C, C++, C#, and Java requests that the sum of X and Y be assigned to the variable
Z. In some other languages (such as Ada) the equivalent statement would appear as

Z := X + Y;

Note that these statements differ only in the syntax of the assignment operator,
which in C, C++, C#, and Java is merely an equal sign but in Ada is a colon fol-
lowed by an equal sign. Perhaps a better notation for the assignment operator is
found in APL, a language that was designed by Kenneth E. Iverson in 1962. (APL
stands for A Programming Language.) It uses an arrow to represent assignment.
Thus, the preceding assignment would be expressed as

Z ← X + Y

in APL (as well as in our pseudocode of Chapter 5).
Much of the power of assignment statements comes from the scope of expres-

sions that can appear on the right side of the statement. In general, any algebraic
expression can be used, with the arithmetic operations of addition, subtraction,
multiplication, and division typically represented by the symbols !, ", *, and /,
respectively. In some languages the combination ** is used to represent exponen-
tiation. For example, in Ada the expression

x ** 2

represents x2. Languages differ, however, in the manner in which algebraic
expressions are interpreted. For example, the expression 2 * 4 ! 6 / 2 could
produce the value 14 if it is evaluated from right to left, or 7 if evaluated from
left to right. These ambiguities are normally resolved by rules of operator
precedence, meaning that certain operations are given precedence over others.
The traditional rules of algebra dictate that multiplication and division have
precedence over addition and subtraction. That is, multiplications and divisions
are performed before additions and subtractions. Following this convention, the
preceding expression would produce the value 11. In most languages, parentheses
can be used to override the language’s operator precedence. Thus 2 * (4 ! 6) / 2
would produce the value 10.

Many programming languages allow the use of one symbol to represent
more than one operation. In these cases the meaning of the symbol is deter-
mined by the data type of the operands. For example, the symbol ! traditionally
indicates addition when its operands are numeric, but in some languages, such
as Java, the symbol indicates concatenation when its operands are character
strings. That is, the result of the expression

“abra” + “cadabra”

is abracadabra. Such multiple use of an operation symbol is called overloading.
While many languages provide built-in overloading of a few common operators,

2556.2 Traditional Programming Concepts

be assigned to a variable (or more precisely, stored in the memory area identi-
fied by the variable). Such a statement normally takes the syntactic form of a
variable, followed by a symbol representing the assignment operation, and then
by an expression indicating the value to be assigned. The semantics of such a
statement is that the expression is to be evaluated and the result stored as the
value of the variable. For example, the statement

Z = X + Y;

in C, C++, C#, and Java requests that the sum of X and Y be assigned to the variable
Z. In some other languages (such as Ada) the equivalent statement would appear as

Z := X + Y;

Note that these statements differ only in the syntax of the assignment operator,
which in C, C++, C#, and Java is merely an equal sign but in Ada is a colon fol-
lowed by an equal sign. Perhaps a better notation for the assignment operator is
found in APL, a language that was designed by Kenneth E. Iverson in 1962. (APL
stands for A Programming Language.) It uses an arrow to represent assignment.
Thus, the preceding assignment would be expressed as

Z ← X + Y

in APL (as well as in our pseudocode of Chapter 5).
Much of the power of assignment statements comes from the scope of expres-

sions that can appear on the right side of the statement. In general, any algebraic
expression can be used, with the arithmetic operations of addition, subtraction,
multiplication, and division typically represented by the symbols !, ", *, and /,
respectively. In some languages the combination ** is used to represent exponen-
tiation. For example, in Ada the expression

x ** 2

represents x2. Languages differ, however, in the manner in which algebraic
expressions are interpreted. For example, the expression 2 * 4 ! 6 / 2 could
produce the value 14 if it is evaluated from right to left, or 7 if evaluated from
left to right. These ambiguities are normally resolved by rules of operator
precedence, meaning that certain operations are given precedence over others.
The traditional rules of algebra dictate that multiplication and division have
precedence over addition and subtraction. That is, multiplications and divisions
are performed before additions and subtractions. Following this convention, the
preceding expression would produce the value 11. In most languages, parentheses
can be used to override the language’s operator precedence. Thus 2 * (4 ! 6) / 2
would produce the value 10.

Many programming languages allow the use of one symbol to represent
more than one operation. In these cases the meaning of the symbol is deter-
mined by the data type of the operands. For example, the symbol ! traditionally
indicates addition when its operands are numeric, but in some languages, such
as Java, the symbol indicates concatenation when its operands are character
strings. That is, the result of the expression

“abra” + “cadabra”

is abracadabra. Such multiple use of an operation symbol is called overloading.
While many languages provide built-in overloading of a few common operators,

2556.2 Traditional Programming Concepts

be assigned to a variable (or more precisely, stored in the memory area identi-
fied by the variable). Such a statement normally takes the syntactic form of a
variable, followed by a symbol representing the assignment operation, and then
by an expression indicating the value to be assigned. The semantics of such a
statement is that the expression is to be evaluated and the result stored as the
value of the variable. For example, the statement

Z = X + Y;

in C, C++, C#, and Java requests that the sum of X and Y be assigned to the variable
Z. In some other languages (such as Ada) the equivalent statement would appear as

Z := X + Y;

Note that these statements differ only in the syntax of the assignment operator,
which in C, C++, C#, and Java is merely an equal sign but in Ada is a colon fol-
lowed by an equal sign. Perhaps a better notation for the assignment operator is
found in APL, a language that was designed by Kenneth E. Iverson in 1962. (APL
stands for A Programming Language.) It uses an arrow to represent assignment.
Thus, the preceding assignment would be expressed as

Z ← X + Y

in APL (as well as in our pseudocode of Chapter 5).
Much of the power of assignment statements comes from the scope of expres-

sions that can appear on the right side of the statement. In general, any algebraic
expression can be used, with the arithmetic operations of addition, subtraction,
multiplication, and division typically represented by the symbols !, ", *, and /,
respectively. In some languages the combination ** is used to represent exponen-
tiation. For example, in Ada the expression

x ** 2

represents x2. Languages differ, however, in the manner in which algebraic
expressions are interpreted. For example, the expression 2 * 4 ! 6 / 2 could
produce the value 14 if it is evaluated from right to left, or 7 if evaluated from
left to right. These ambiguities are normally resolved by rules of operator
precedence, meaning that certain operations are given precedence over others.
The traditional rules of algebra dictate that multiplication and division have
precedence over addition and subtraction. That is, multiplications and divisions
are performed before additions and subtractions. Following this convention, the
preceding expression would produce the value 11. In most languages, parentheses
can be used to override the language’s operator precedence. Thus 2 * (4 ! 6) / 2
would produce the value 10.

Many programming languages allow the use of one symbol to represent
more than one operation. In these cases the meaning of the symbol is deter-
mined by the data type of the operands. For example, the symbol ! traditionally
indicates addition when its operands are numeric, but in some languages, such
as Java, the symbol indicates concatenation when its operands are character
strings. That is, the result of the expression

“abra” + “cadabra”

is abracadabra. Such multiple use of an operation symbol is called overloading.
While many languages provide built-in overloading of a few common operators,

2556.2 Traditional Programming Concepts

Traditional
Programming

• Overloading
• multiple use of an operation
symbol

• Ex.

•  is abracadabra.

Procedural Units

be assigned to a variable (or more precisely, stored in the memory area identi-
fied by the variable). Such a statement normally takes the syntactic form of a
variable, followed by a symbol representing the assignment operation, and then
by an expression indicating the value to be assigned. The semantics of such a
statement is that the expression is to be evaluated and the result stored as the
value of the variable. For example, the statement

Z = X + Y;

in C, C++, C#, and Java requests that the sum of X and Y be assigned to the variable
Z. In some other languages (such as Ada) the equivalent statement would appear as

Z := X + Y;

Note that these statements differ only in the syntax of the assignment operator,
which in C, C++, C#, and Java is merely an equal sign but in Ada is a colon fol-
lowed by an equal sign. Perhaps a better notation for the assignment operator is
found in APL, a language that was designed by Kenneth E. Iverson in 1962. (APL
stands for A Programming Language.) It uses an arrow to represent assignment.
Thus, the preceding assignment would be expressed as

Z ← X + Y

in APL (as well as in our pseudocode of Chapter 5).
Much of the power of assignment statements comes from the scope of expres-

sions that can appear on the right side of the statement. In general, any algebraic
expression can be used, with the arithmetic operations of addition, subtraction,
multiplication, and division typically represented by the symbols !, ", *, and /,
respectively. In some languages the combination ** is used to represent exponen-
tiation. For example, in Ada the expression

x ** 2

represents x2. Languages differ, however, in the manner in which algebraic
expressions are interpreted. For example, the expression 2 * 4 ! 6 / 2 could
produce the value 14 if it is evaluated from right to left, or 7 if evaluated from
left to right. These ambiguities are normally resolved by rules of operator
precedence, meaning that certain operations are given precedence over others.
The traditional rules of algebra dictate that multiplication and division have
precedence over addition and subtraction. That is, multiplications and divisions
are performed before additions and subtractions. Following this convention, the
preceding expression would produce the value 11. In most languages, parentheses
can be used to override the language’s operator precedence. Thus 2 * (4 ! 6) / 2
would produce the value 10.

Many programming languages allow the use of one symbol to represent
more than one operation. In these cases the meaning of the symbol is deter-
mined by the data type of the operands. For example, the symbol ! traditionally
indicates addition when its operands are numeric, but in some languages, such
as Java, the symbol indicates concatenation when its operands are character
strings. That is, the result of the expression

“abra” + “cadabra”

is abracadabra. Such multiple use of an operation symbol is called overloading.
While many languages provide built-in overloading of a few common operators,

2556.2 Traditional Programming Concepts

Traditional
Programming

• Control Statements

Procedural Units

would be written as

if (condition) statementA
else statementB;

and

while (condition)
{loop body}

in C, C++, C#, and Java. Note that the fact that these statements are identical in
all four languages is a consequence of the fact that C++, C#, and Java are object-
oriented extensions of the imperative language C. In contrast, the corresponding
statements would be written as

IF condition THEN
statementA;

ELSE
statementB;

END IF

and

WHILE condition LOOP
loop body

END LOOP;

in the language Ada.
Another common branching structure is often represented by a switch or

case statement. It provides a means of selecting one statement sequence among
several options, depending on the value assigned to a designated variable. For
example, the statement

2576.2 Traditional Programming Concepts

Programming Language Cultures
As with natural languages, users of different programming languages tend to
develop cultural differences and often debate the merits of their perspectives. Some-
times these differences are significant as, for instance, when different programming
paradigms are involved. In other cases, the distinctions are subtle. For example,
whereas the text distinguishes between procedures and functions (Section 6.3),
C programmers refer to both as functions. This is because a procedure in a C program
is thought of as a function that does not return a value. A similar example is that C++
programmers refer to a procedure within an object as a member function, whereas
the generic term for this is method. This discrepancy can be traced to the fact that C++
was developed as an extension of C. Another cultural difference is that programs in
Ada are normally typeset with reserved words in either uppercase or bold—a tradition
that is not widely practiced by users of C, C++, C#, FORTRAN, or Java.

Although this book is language neutral and uses generic terminology, each spe-
cific example is presented in a form that is compatible with the style of the language
involved. As you encounter these examples, you should keep in mind that they are
presented as examples of how generic ideas appear in actual languages—not as a
means of teaching the details of a particular language. Try to look at the forest rather
than the trees.

switch (variable) {
case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD}

in C, C++, C#, and Java requests the execution of statementA, statementB,
or statementC depending on whether the current value of variable is A, B,
or C, respectively or the execution of statementD if the value of variable is
something else. The same structure would be expressed as

CASE variable IS
WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;

END CASE

in Ada.
Still another common control structure, often called the for structure, is

shown in Figure 6.7 along with its representation in C++, C#, and Java. This is
a loop structure similar to that of the while statement in our pseudocode. The
difference is that all the initialization, modification, and termination of the loop
is incorporated in a single statement. Such a statement is convenient when the
body of the loop is to be performed once for each value within a specific range.
In particular, the statements in Figure 6.7 direct that the loop body be performed
repeatedly—first with the value of Count being 1, then with the value of Count
being 2, and again with the value of Count being 3.

258 Chapter 6 Programming Languages

Assign Count the value 1

Count < 4?

Body

True

False

Assign Count the
value Count + 1

for (int Count = 1; Count < 4; Count++)
body ;

Figure 6.7 The for loop structure and its representation in C++, C#, and Java

Traditional
Programming

• Control Statements

Procedural Units

would be written as

if (condition) statementA
else statementB;

and

while (condition)
{loop body}

in C, C++, C#, and Java. Note that the fact that these statements are identical in
all four languages is a consequence of the fact that C++, C#, and Java are object-
oriented extensions of the imperative language C. In contrast, the corresponding
statements would be written as

IF condition THEN
statementA;

ELSE
statementB;

END IF

and

WHILE condition LOOP
loop body

END LOOP;

in the language Ada.
Another common branching structure is often represented by a switch or

case statement. It provides a means of selecting one statement sequence among
several options, depending on the value assigned to a designated variable. For
example, the statement

2576.2 Traditional Programming Concepts

Programming Language Cultures
As with natural languages, users of different programming languages tend to
develop cultural differences and often debate the merits of their perspectives. Some-
times these differences are significant as, for instance, when different programming
paradigms are involved. In other cases, the distinctions are subtle. For example,
whereas the text distinguishes between procedures and functions (Section 6.3),
C programmers refer to both as functions. This is because a procedure in a C program
is thought of as a function that does not return a value. A similar example is that C++
programmers refer to a procedure within an object as a member function, whereas
the generic term for this is method. This discrepancy can be traced to the fact that C++
was developed as an extension of C. Another cultural difference is that programs in
Ada are normally typeset with reserved words in either uppercase or bold—a tradition
that is not widely practiced by users of C, C++, C#, FORTRAN, or Java.

Although this book is language neutral and uses generic terminology, each spe-
cific example is presented in a form that is compatible with the style of the language
involved. As you encounter these examples, you should keep in mind that they are
presented as examples of how generic ideas appear in actual languages—not as a
means of teaching the details of a particular language. Try to look at the forest rather
than the trees.

switch (variable) {
case 'A': statementA; break;
case 'B': statementB; break;
case 'C': statementC; break;
default: statementD}

in C, C++, C#, and Java requests the execution of statementA, statementB,
or statementC depending on whether the current value of variable is A, B,
or C, respectively or the execution of statementD if the value of variable is
something else. The same structure would be expressed as

CASE variable IS
WHEN 'A'=> statementA;
WHEN 'B'=> statementB;
WHEN 'C'=> statementC;
WHEN OTHERS=> statementD;

END CASE

in Ada.
Still another common control structure, often called the for structure, is

shown in Figure 6.7 along with its representation in C++, C#, and Java. This is
a loop structure similar to that of the while statement in our pseudocode. The
difference is that all the initialization, modification, and termination of the loop
is incorporated in a single statement. Such a statement is convenient when the
body of the loop is to be performed once for each value within a specific range.
In particular, the statements in Figure 6.7 direct that the loop body be performed
repeatedly—first with the value of Count being 1, then with the value of Count
being 2, and again with the value of Count being 3.

258 Chapter 6 Programming Languages

Assign Count the value 1

Count < 4?

Body

True

False

Assign Count the
value Count + 1

for (int Count = 1; Count < 4; Count++)
body ;

Figure 6.7 The for loop structure and its representation in C++, C#, and Java

Traditional
Programming

• Comments
• explanatory statements
•  for internal documentation,
• 

Procedural Units

The point to be made from the examples we have cited is that common
branching structures appear, with slight variations, throughout the gamut of
imperative and object-oriented programming languages. A somewhat surprising
result from theoretical computer science is that only a few of these structures
are needed to ensure that a programming language provides a means of express-
ing a solution to any problem that has an algorithmic solution. We will investi-
gate this claim in Chapter 12. For now, we merely point out that learning a
programming language is not an endless task of learning different control state-
ments. Most of the control structures found in today’s programming languages
are essentially variations of those we have identified here.

Comments
No matter how well a programming language is designed and how well the lan-
guage’s features are applied in a program, additional information is usually
helpful or mandatory when a human tries to read and understand the program.
For this reason, programming languages provide ways of inserting explanatory
statements, called comments, within a program. These statements are ignored
by a translator, and therefore their presence or absence does not affect the pro-
gram from a machine’s point of view. The machine-language version of the pro-
gram produced by a translator will be the same with or without comments, but
the information provided by these statements constitutes an important part of
the program from a human’s perspective. Without such documentation, large, com-
plex programs can easily thwart the comprehension of a human programmer.

There are two common ways of inserting comments within a program. One
is to surround the entire comment by special markers, one at the beginning
of the comment and one at the end. The other is to mark only the beginning
of the comment and allow the comment to occupy the remainder of the line
to the right of the marker. We find examples of both these techniques in C++,
C#, and Java. They allow comments to be bracketed by /* and */, but they also
allow a comment to begin with // and extend through the remainder of the line.
Thus both

/* This is a comment. */

and

// This is a comment.

are valid comment statements.
A few words are in order about what constitutes a meaningful comment.

Beginning programmers, when told to use comments for internal documenta-
tion, tend to follow a program statement such as

ApproachAngle = SlipAngle + HyperSpaceIncline;

with a comment such as “Calculate ApproachAngle by adding HyperSpaceIn-
cline and SlipAngle.” Such redundancy adds length rather than clarity to a pro-
gram. The purpose of a comment is to explain the program, not to repeat it. A more
appropriate comment in this case might be to explain why ApproachAngle is
being calculated (if that is not obvious). For example, the comment,
“ApproachAngle is used later to compute ForceFieldJettisonVelocity and is not
needed after that,” is more helpful than the previous one.

2596.2 Traditional Programming Concepts

Procedural
Units

• Procedure
• a set of instructions for
performing a task that can be
used as an abstract tool by
other program units.

imperative program, beginning with declaration statements that describe the
variables used in the procedure followed by imperative statements that describe
the steps to be performed when the procedure is executed.

As a general rule, a variable declared within a procedure is a local variable,
meaning that it can be referenced only within that procedure. This eliminates any
confusion that might occur if two procedures, written independently, happen to
use variables of the same name. (The portion of a program in which a variable can
be referenced is called the scope of the variable. Thus, the scope of a local variable
is the procedure in which it is declared. Variables whose scopes are not restricted to
a particular part of a program are called global variables. Most programming lan-
guages provide a means of specifying whether a variable is to be local or global.)

In contrast to our pseudocode of Chapter 5 in which we requested the
execution of a procedure by a statement such as “Apply the procedure
DeactivateKrypton,” as specified, most modern programming languages
allow procedures to be called by merely stating the procedure’s name. For
example, if GetNames, SortNames, and WriteNames were the names of pro-
cedures for acquiring, sorting, and printing a list of names, then a program to
get, sort, and print the list could be written as

GetNames;
SortNames;
WriteNames;

rather than

Apply the procedure GetNames.
Apply the procedure SortNames.
Apply the procedure WriteNames.

Note that by assigning each procedure a name that indicates the action per-
formed by the procedure, this condensed form appears as a sequence of com-
mands that reflect the meaning of the program.

2616.3 Procedural Units

Calling
program unit

ProcedureControl is
transferred
to procedure.

Procedure is
executed.

Control is returned to
calling environment when
procedure is completed.

Calling program
unit requests
procedure.

Calling program
unit continues.

Figure 6.8 The flow of control involving a procedure

Procedural
Units

• Procedure
• procedure’s header:

•  identifies, among other things, the
name of the procedure.

• Following this header are the
statements that define the
procedure’s details.

• a variable declared within a
procedure is a local variable,

• The portion of a program in which
a variable can be referenced is
called the scope of the variable

•  global variables

Procedural Units

• Parameters

Parameters
Procedures are often written using generic terms that are made specific when the
procedure is applied. For example, Figure 5.11 of the preceding chapter is expressed
in terms of a generic list rather than a specific list. In our pseudocode, we agreed to
identify such generic terms within parentheses in the procedure’s header. Thus the
procedure in Figure 5.11 begins with the header

procedure Sort (List)

and then proceeds to describe the sorting process using the term List to refer to
the list being sorted. If we want to apply the procedure to sort a wedding guest
list, we need merely follow the directions in the procedure, assuming that the
generic term List refers to the wedding guest list. If, however, we want to sort a
membership list, we need merely interpret the generic term List as referring to
the membership list.

Such generic terms within procedures are called parameters. More pre-
cisely, the terms used within the procedure are called formal parameters and
the precise meanings assigned to these formal parameters when the procedure is
applied are called actual parameters. In a sense, the formal parameters repre-
sent slots in the procedure into which actual parameters are plugged when the
procedure is requested.

As in the case of our pseudocode, most programming languages require that,
when defining a procedure, the formal parameters be listed in parentheses in the
procedure’s header. As an example, Figure 6.9 presents the definition of a proce-
dure named ProjectPopulation as it might be written in the programming

262 Chapter 6 Programming Languages

Starting the head with the term
“void” is the way that a C
programmer specifies that the
program unit is a procedure
rather than a function. We will
learn about functions shortly.

The formal parameter list. Note
that C, as with many programming
languages, requires that the data
type of each parameter be specified.

This declares a local variable
named Year.

void (float GrowthRate)ProjectPopulation

int Year;

Population[0] = 100.0;
for (Year = 0; Year =< 10; Year++)
Population[Year+1] = Population[Year] + (Population[Year] * GrowthRate);

These statements describe how the
populations are to be computed and
stored in the global array named
Population.

}

{

Figure 6.9 The procedure ProjectPopulation written in the programming language C

Parameters passed by value vs.
reference

procedure direct access to the actual parameters by telling it the addresses of the
actual parameters in the calling program unit. In this case we say that the
parameters are passed by reference. Note that passing parameters by reference
allows the procedure to modify the data residing in the calling environment.
Such an approach would be desirable in the case of a procedure for sorting a list
since the point of calling such a procedure would be to cause changes in the list.

As an example, let us suppose that the procedure Demo was defined as

procedure Demo (Formal)
Formal ← Formal + 1;

Moreover, suppose that the variable Actual was assigned the value 5 and we
called Demo with the statement

Demo(Actual)

Then, if parameters were passed by value, the change to Formal in the procedure
would not be reflected in the variable Actual (Figure 6.10). But, if parameters
were passed by reference, the value of Actual would be incremented by
one (Figure 6.11).

264 Chapter 6 Programming Languages

a. When the procedure is called, a copy of the data is given to
 the procedure

Actual

Calling environment Procedure‘s environment

Formal
5 5

b. and the procedure manipulates its copy.

Actual

Calling environment Procedure‘s environment

Formal
5 6

Calling environment

c. Thus, when the procedure has terminated, the calling
 environment has not been changed.

Actual
5

Figure 6.10 Executing the procedure Demo and passing parameters by value

2656.3 Procedural Units

Figure 6.11 Executing the procedure Demo and passing parameters by reference

a. When the procedure is called, the formal parameter becomes
 a reference to the actual parameter.

b. Thus, changes directed by the procedure are made to the
 actual parameter

c. and are, therefore, preserved after the procedure has
 terminated.

Calling environment

Actual
6

Actual

Actual

Calling environment Procedure’s environment

Formal
5

Actual Formal

Actual

Calling environment Procedure’s environment

Formal
6

FormalActual

Visual Basic
Visual Basic is an object-oriented programming language that was developed by
Microsoft as a tool by which users of Microsoft’s Windows operating system could
develop their own GUI applications. Actually, Visual Basic is more than a language—
it is an entire software development package that allows a programmer to construct
applications from predefined components (such as buttons, check boxes, text boxes,
scroll bars, etc.) and to customize these components by describing how they should
react to various events. In the case of a button, for example, the programmer would
describe what should happen when that button is clicked. In Chapter 7 we will learn
that this strategy of constructing software from predefined components represents
the current trend in software development techniques.

The popularity of the Windows operating system combined with the conven-
ience of the Visual Basic development package has promoted Visual Basic to a widely
used programming language. Whether this prominence will continue now that
Microsoft has introduced C# remains to be seen.

Function
•  The term function refers to a program unit similar to a

procedure except that a value is transferred back to the
calling program unit as “the value of the function.”

Functions are defined within a program in much the same way as proce-
dures. The difference is that a function header usually begins by specifying the
data type of the value that is to be returned, and the function definition usually
ends with a return statement in which the value to be returned is specified.
Figure 6.12 presents a definition of a function named CylinderVolume as it
might be written in the language C. (Actually, a C programmer would use a more
succinct form, but we will use this somewhat verbose version for pedagogical
reasons.) When called, the function receives specific values for the formal
parameters Radius and Height and returns the result of computing the volume
of a cylinder with those dimensions. Thus the function could be used elsewhere
in the program in a statement such as

Cost = CostPerVolUnit * CylinderVolume(3.45, 12.7);

to determine the cost of the contents of a cylinder with radius 3.45 and height 12.7.

2676.3 Procedural Units

Questions & Exercises

1. What is meant by the “scope” of a variable?
2. What is the difference between a procedure and a function?
3. Why do many programming languages implement I/O operations as if

they were calls to procedures?
4. What is the difference between a formal parameter and an actual parameter?
5. When writing in modern programming languages, programmers tend to

use verbs for names of procedures and nouns for names of functions. Why?

The function header begins with
the type of the data that will
be returned.

Compute the volume of
the cylinder.

float CylinderVolume (float Radius, float Height)

Declare a
local variable
named Volume.

float Volume;

return Volume;

Volume = 3.14 * Radius * Radius * Height;

Terminate the function and
return the value of the
variable Volume.

{

}

Figure 6.12 The function CylinderVolume written in the programming language C

Assignment
•  10 programming problems to be solved at the Lab.

Notes about the exam
•  Lab

•  Computer-based

• Oral
•  Discussion question

•  Final
•  MCQ + problems + programming, (NO articles questions)

• Book
•  Ch.1 except 1.7
•  Ch.2
•  Ch. 3 except 3.1
•  Ch. 4
•  Ch. 6 (6.2 and 6.3)

Notes to You
• How to start reading a

book?
•  Read the contents
•  Skim each chapter
•  Prepare a side list with

your translated words
•  Learn the meanings of

the scientific
expressions

Have you noticed that
Appendix F is Answers to
the chapters questions?

Students’ feedback
• Comments about the book

•  Writing style, arrangement, examples, problems

• Comments about the lecture
•  Timing, coverage, explanation, respond to questions

• Comments about the slides
•  Clarity, animations, videos,

• Comments about the assignments
•  Variety, coverage, amount, time allowance

• Comments about the Lab
•  Computers, software, discipline,

